在其他条件不变的前提下,以下哪种做法容易引起机器学习中的过拟合问题()

本文探讨了机器学习中过拟合的问题,分析了在不同情况下如何引起过拟合,并给出了解决方案。特别讨论了使用高斯核/RBF核替代线性核可能导致过拟合的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

感想

这道题我感觉十拿九稳的,但是一做就错,看来需要注意一下啦。

problem

在其他条件不变的前提下,以下哪种做法容易引起机器学习中的过拟合问题()

A. 增加训练集量
B. 减少神经网络隐藏层节点数
C. 删除稀疏的特征   S

D. SVM算法中使用高斯核/RBF核代替线性核

答案为:D

analysis

避免过拟合的方法:正则化方法,强制减少参数,增大训练数据集。

对于B,过拟合是太多的参数引起的。神经网络减少隐藏层节点,就是在减少参数,只会将训练误差变高,不会导致过拟合。 
对于D,svm高斯核函数比线性核函数模型更复杂,容易过拟合

径向基(RBF)核函数/高斯核函数的说明

这个核函数可以将原始空间映射到无穷维空间。对于参数 ,如果选的很大,高次特征上的权重实际上衰减得非常快,实际上(数值上近似一下)相当于一个低维的子空间;反过来,如果选得很小,则可以将任意的数据映射为线性可分——当然,这并不一定是好事,因为随之而来的可能是非常严重的过拟合问题。不过,总的来说,通过调整参数 ,高斯核实际上具有相当高的灵活性,也是 使用最广泛的核函数 之一。


参考文献

[1].牛客网.https://www.nowcoder.com/questionTerminal/1bf1c35bf6054428af0dc04bb45a1db3

[2].机器学习题目汇总二.http://blog.csdn.net/will130/article/details/50706294

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

农民小飞侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值