感想
这道题我感觉十拿九稳的,但是一做就错,看来需要注意一下啦。
problem
在其他条件不变的前提下,以下哪种做法容易引起机器学习中的过拟合问题()
A. 增加训练集量
B. 减少神经网络隐藏层节点数
C. 删除稀疏的特征 S
D. SVM算法中使用高斯核/RBF核代替线性核
答案为:D
analysis
避免过拟合的方法:正则化方法,强制减少参数,增大训练数据集。
对于D,svm高斯核函数比线性核函数模型更复杂,容易过拟合
径向基(RBF)核函数/高斯核函数的说明
这个核函数可以将原始空间映射到无穷维空间。对于参数 ,如果选的很大,高次特征上的权重实际上衰减得非常快,实际上(数值上近似一下)相当于一个低维的子空间;反过来,如果选得很小,则可以将任意的数据映射为线性可分——当然,这并不一定是好事,因为随之而来的可能是非常严重的过拟合问题。不过,总的来说,通过调整参数 ,高斯核实际上具有相当高的灵活性,也是 使用最广泛的核函数 之一。
参考文献
[1].牛客网.https://www.nowcoder.com/questionTerminal/1bf1c35bf6054428af0dc04bb45a1db3
[2].机器学习题目汇总二.http://blog.csdn.net/will130/article/details/50706294