石子归并 CSU - 1592 (区间dp,线性dp)

现在有n堆石子,第i堆有ai个石子。现在要把这些石子合并成一堆,每次只能合并相邻两个,每次合并的代价是两堆石子的总石子数。求合并所有石子的最小代价。

Input

第一行包含一个整数T(T<=50),表示数据组数。
每组数据第一行包含一个整数n(2<=n<=100),表示石子的堆数。
第二行包含n个正整数ai(ai<=100),表示每堆石子的石子数。

Output

每组数据仅一行,表示最小合并代价。

Sample Input
2
4
1 2 3 4
5
3 5 2 1 4
Sample Output
19
33
题目思路:
跟最优矩阵连乘差不多,我们这样考虑问题,多余合并,肯定有一次,最后合并,假设这个位置是k,那么答案就是,cost1~k-1 +costk+1~n了而这两个的值也跟这个一样,也是生成了一颗新的解答树,然后选取一个最优值,那么就可以知道是用从下到上的区间dp了,状态转移方程为dp[i][j] =min(dp[i][k]+dp[k+1][j]+cost,dp[i][j]),为什么这里是dp[i][k] +dp[k+1][j]呢  这里稍微跟上面那道切木棍不同,因为对于这道题老说每一次的决策是找一个合适的果子 ,那么自然是由dp[i][k]+dp[k+1][j]转移过来的,下面是ac代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<sstream>
#define LL long long
#define INF 0x3f3f3f3f
using namespace std;
int dp[100+10][100+10];
int T,n;
int a[100+10];
int sum[100+10];
int main()
{
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        for(int i = 1 ;i<=n;i++)
        {
            scanf("%d",&a[i]);
        }
        for(int i = 1 ;i<=n;i++)
        {
            sum[i] = sum[i-1]+a[i];
        }
        for(int i = 0;i<=n;i++)
        {
            for(int j = 0 ;j<=n;j++)
            {
                dp[i][j] = INF;
                if(i==j)
                    dp[i][j] = 0;
            }
        }
        for(int len = 1;len<n;len++)
        {
            for(int i = 1 ;i<n;i++)
            {
                int j = i+len;
                if(j>n)
                    continue;
                for(int k = i ;k < j;k++)
                {
                    dp[i][j]  = min(dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1],dp[i][j]);
                }
            }
        }
        cout<<dp[1][n]<<endl;
    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值