现在有n堆石子,第i堆有ai个石子。现在要把这些石子合并成一堆,每次只能合并相邻两个,每次合并的代价是两堆石子的总石子数。求合并所有石子的最小代价。
第一行包含一个整数T(T<=50),表示数据组数。
每组数据第一行包含一个整数n(2<=n<=100),表示石子的堆数。
第二行包含n个正整数ai(ai<=100),表示每堆石子的石子数。
每组数据仅一行,表示最小合并代价。
2 4 1 2 3 4 5 3 5 2 1 4
19 33
题目思路: 跟最优矩阵连乘差不多,我们这样考虑问题,多余合并,肯定有一次,最后合并,假设这个位置是k,那么答案就是,cost1~k-1 +costk+1~n了而这两个的值也跟这个一样,也是生成了一颗新的解答树,然后选取一个最优值,那么就可以知道是用从下到上的区间dp了,状态转移方程为dp[i][j] =min(dp[i][k]+dp[k+1][j]+cost,dp[i][j]),为什么这里是dp[i][k] +dp[k+1][j]呢 这里稍微跟上面那道切木棍不同,因为对于这道题老说每一次的决策是找一个合适的果子 ,那么自然是由dp[i][k]+dp[k+1][j]转移过来的,下面是ac代码:
#include<cstdio> #include<algorithm> #include<cstring> #include<iostream> #include<sstream> #define LL long long #define INF 0x3f3f3f3f using namespace std; int dp[100+10][100+10]; int T,n; int a[100+10]; int sum[100+10]; int main() { scanf("%d",&T); while(T--) { scanf("%d",&n); for(int i = 1 ;i<=n;i++) { scanf("%d",&a[i]); } for(int i = 1 ;i<=n;i++) { sum[i] = sum[i-1]+a[i]; } for(int i = 0;i<=n;i++) { for(int j = 0 ;j<=n;j++) { dp[i][j] = INF; if(i==j) dp[i][j] = 0; } } for(int len = 1;len<n;len++) { for(int i = 1 ;i<n;i++) { int j = i+len; if(j>n) continue; for(int k = i ;k < j;k++) { dp[i][j] = min(dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1],dp[i][j]); } } } cout<<dp[1][n]<<endl; } }