- 博客(1113)
- 资源 (64)
- 收藏
- 关注

原创 院士给我们颁发了浙江省人工智能专家聘书,提出了 3 点希望
摘要:作者参加了浙江省"人工智能+"主题活动,获颁人工智能专家证书。朱位秋院士提出三点期望:引领技术创新、推动产业融合、传播AI知识。会议探讨了AI应用趋势、数据重要性及企业落地策略。作者还受邀在网商银行分享AI应用案例,强调AI认知差异将决定未来发展。文章传递出AI技术变革浪潮中,实践应用与知识传播同样重要的核心观点。(149字)
2025-09-19 07:40:44
1179
3

原创 从大厂后端成功转型AI 应用工程师并成为人工智能专家,这两年我干了什么?
这是一位从Java开发成功转型AI应用开发的工程师经验分享。作者现为浙江省人工智能专家,强调不擅长AI的人往往不知道自己的不足,建议使用全球最先进的大模型如GPT、Claude而非仅用免费国内模型。要用AI时代的学习工作方式,通过智能体提升效率,坚持写作防止思考退化。当前AI自媒体鱼龙混杂需理性判断,各岗位界限模糊技术栈趋同,最能用好AI工具的人将在这场历史变革中获得更多机会。
2025-09-18 08:41:19
1252
6

原创 一年搞定两个软考高级证书,关键技巧大揭秘
软考,全称为计算机技术与软件专业技术资格(水平)考试,是针对计算机和软件领域从业者设立的一种国家级考试体系。它旨在科学、公正地测试和评价考生的技术水平和能力,为用人单位选拔合格人才提供客观标准。软考分为初级、中级和高级三个等级,每个等级下又细分多个科目,覆盖了计算机软件、计算机网络、计算机应用技术、信息系统和信息服务等多个领域。软考的价值不在于证书本身,而在于备考过程中技能和能力的全面提升。无论最终是否能够一次通过,这个过程都将成为你职业生涯中宝贵的学习经历。
2024-12-13 23:01:31
2088
9

原创 AI 应用之文章转脑图的 N 种姿势
本文主要介绍利用 AI 将文章转为思维导图的几种方法,如果你是人民币玩家直接使用现成的工具,如果你嫌麻烦可以采用曲线救国的方案,如通过 Markdown 中转后导入 Xmind 或者通过 PlantUML 脑图。本文只是举一个例子,希望大家可以举一反三,能够充分利用 AI 解决工作、生活和学习中的各种问题。
2024-04-03 00:22:13
3000
6

原创 如何写出高质量的文章:从战略到战术
高质量的文章通常具备以下特点:另外,通常来说很多知识付费平台的热门专栏、很多知名开源项目的官方文档、很多大厂的技术公众号的文章质量也非常高。《对抗软件复杂度的战争》,就是一篇不错的高质量文章案例。大家可以大致浏览一下,该文图文并茂;引用文章众多,论证充分;能够结合源码和经典的理论;能够引发读者的思考。本文主要结合自己的写作经历,从战略和战术两个层面讲述如何写出高质量的文章,希望对大家写作有帮助。如果你有不同的看法、有补充的建议,欢迎在评论区和我交流。
2022-10-01 22:02:14
6961
15
原创 LLM驱动的Agent Chain of Thought、ReAct、Plan-and-Execute、Multi-Agent 等设计模式的区别
LLM驱动的Agent的常见设计模式有Chain of Thought、ReAct、Plan-and-Execute、Multi-Agent,每种模式在落地方式上差异较大,适用于不同的任务场景。
2025-09-27 15:30:33
578
原创 为什么大模型一读链接就“幻觉”?原因找到了,附赠保姆级解决办法
文章摘要: 当大模型无法正确解析超链接内容时,直接更换模型并非最佳解决方案。本文分析了问题根源——大模型平台可能未提供读取链接内容的能力或工具失效,导致模型编造错误答案。作者推荐两种高效方法:1. 使用Chrome插件MarkSnip将网页转为Markdown格式直接粘贴内容;2. 采用AI浏览器(如夸克、Comet)实现网页内容智能交互。这两种方式能有效规避链接解析问题,提升工作效率,尤其推荐Markdown插件作为通用解决方案。文章还指出AI浏览器未来将深度融合复杂操作功能。
2025-09-24 07:53:11
598
原创 一个提示词,让 Kimi、DeepSeek、Qwen 同时作答,效率飙升300%!
学了今天的知识,当看到同事还傻傻地一个提示词往多个平台复制粘贴时,就可以在同事面前露一手啦!最后,提醒大家,要警惕“模型茧房”,避免自己不思考就问 AI,导致自己思考能力下降,避免长时间依赖同一个模型,受限于某个模型的能力极限。如果有问题,欢迎在评论区留言讨论。《AI 不会取代你,但懂AI的人会!行业大佬告诉你如何不被淘汰》《院士给我们颁发了浙江省人工智能专家聘书,提出了 3 点希望》《从大厂后端成功转型AI 应用工程师并成为人工智能专家,这两年我干了什么?
2025-09-23 07:42:13
834
原创 AI 不会取代你,但懂AI的人会!行业大佬告诉你如何不被淘汰,附GOSIM大会全套PPT!
本文分享了GOSIM大会上多位AI专家的核心观点。主要探讨了AI对教育和工程师职业的影响:90%白领工作将被AI取代,教育需要培养AI原住民、未知探险家和独特创造者三类人才,工程师需转向监督、测试等更高阶工作。文章还介绍了AI智能体在企业落地应用的实际案例,强调终身学习和批判性思维的重要性。文末提供免费获取大会PPT资料的方式,帮助读者深入了解AI前沿发展。
2025-09-22 07:51:46
555
2
原创 谷歌 Nano Banana“逆天”操作:高中模糊旧照被我“复活”,连同学的笑容都清晰了
Nano Banana火爆出圈:从趣味手办到实用照片修复 近期AI工具Nano Banana引发网络热潮,网友用它制作全家福手办、宠物模型等创意作品。作者分享了一个更实用的应用场景——修复珍贵老照片。面对高中纪念册中受损的照片,作者用Google AI Studio的Nano Banana模型,通过简单提示词就成功修复了水渍模糊的老照片,效果远超预期。这个案例展示了AI工具在保存记忆方面的实用价值,也预示着AI技术将带来更多商业机会。作者认为,未来属于善用AI工具并具商业头脑的人。
2025-09-17 07:30:00
4890
86
原创 AI 浪潮席卷 GOSIM 大会:我被哪些创新观点所震撼?
本文分享了作者参加GOSIM杭州2025大会的见闻与感悟。大会聚焦AI时代的开源生态与创新教育,华为专家提出"超级个体"和"超级工厂"概念,指出新技术产业化周期缩短;上海交大教授预言AI将取代90%白领工作,强调"人机共生"学习模式的重要性;华为工程师分享了企业AI落地的实践经验;法国学者提出工程师需掌握"AI+"复合技能。作者认为,AI时代属于能快速适应变化、善于运用AI工具、兼具业务理解与技术能力的复合型人才。大会展现了AI
2025-09-14 20:53:42
977
4
原创 世人只知张小龙,无人记我陶建辉
57岁的程序员陶建辉曾因错过即时通讯风口而遗憾,2007年他早于微信团队开发出免费短信应用"和信",却因市场环境不成熟而失败。如今,他创立的涛思数据迎来AI新机遇,推出工业数据管理平台IDMP,主打"无问智推"功能,利用大模型自动分析工业数据,无需人工提问。陶建辉认为AI消除了行业知识壁垒,让基础软件公司能直达终端用户,这次他决心全速抓住从百亿到千亿规模的市场机会。
2025-08-14 00:18:01
1122
5
原创 Vibe Coding 不是洪水猛兽
氛围编程的精髓不在于完全依赖AI,而在于让AI成为高效助手。掌握基础编程知识仍然重要,这样才能识别AI什么时候跑偏了。
2025-08-05 08:30:00
675
原创 OpenAI 学习模式提示词深度剖析:一个提示词工程的教科书级案例
OpenAI"学习模式"提示词的设计精妙之处:1. 采用层次化结构设计,明确划分背景、规则、功能、语调和重点,确保指令优先级清晰;2. 融入认知科学理论,如单次只提一个问题的认知负荷限制,以及基于现有知识的建构主义学习原则;3. 创新交互设计,结合苏格拉底式提问、多模态活动和渐进式引导,形成动态学习体验;4. 多重强化关键边界,三次强调"不直接给答案"的核心原则,并设置容错机制允许用户两次尝试机会。该提示词展现了将教育理论与AI工程实践完美融合的专业水平。
2025-08-04 08:00:00
1010
原创 OpenAI 学习模式提示词深度剖析:一个提示词工程的教科书级案例
OpenAI的"学习模式提示词"展现了提示词工程的精妙设计。该提示词采用"约束-功能-风格-强化"四层架构,融合认知科学理论(如认知负荷、建构主义学习)与教育实践(苏格拉底教学法)。通过分层规则设定、多重边界控制(三次强调不直接给答案)、渐进式错误处理等设计,实现了以学生为中心、引导式学习的智能辅导功能。其结构化设计、防御性提示和交互多样性(解释/提问/活动交替)体现了工程美学,为AI教育应用提供了经典范例。
2025-08-02 16:28:35
604
原创 什么你不知道 Cherry Studio 有快捷助手?
摘要:本文介绍了如何优化Cherry Studio的使用体验,通过设置快捷助手功能实现快速调用。作者详细讲解了启用快捷助手、设置快捷键、选择默认助手等操作步骤,并指出当前功能存在默认关闭、设置入口隐蔽等用户体验问题,建议后续优化。该功能可显著提升AI助手的调用效率,支持自定义常用智能体和剪贴板内容自动输入。
2025-07-29 08:00:00
447
原创 AI 是“认知杠杆”,是“能力放大器”
摘要:当前AI应用存在"人厉害才好用"的天花板现象,主要源于10大关键原因:1)通用模型与个性化需求的错位;2)提示工程门槛高;3)上下文管理复杂;4)输出需二次加工;5)功能设计偏技术化;6)缺乏真正意图理解;7)交互反馈机制不足;8)任务拆解能力有限;9)知识差距放大效应;10)缺乏自适应个性化机制。现阶段AI仍属"手动挡"工具,提示词工程依然重要,用户需提升需求表达和思维判断能力,才能在AI时代保持竞争力。行业需警惕夸大宣传,回归理性认知AI的实际能力边界。(1
2025-07-25 08:00:00
634
原创 Weavefox 图片 1 比 1 生成前端源代码
蚂蚁Weavefox上线:AI助力前端1:1还原开发体验 蚂蚁集团新推出的Weavefox平台引发关注,该工具通过截图即可1:1还原前端界面,支持Kimi-K2模型。用户只需上传设计图,系统会自动生成提示词并输出代码,支持组件拆分和技术栈选择,还原度令人满意。注册即赠100试用额度,操作流程简洁高效。 展望未来,AI将在软件开发全流程中发挥更大作用,从需求分析到部署优化的各个环节实现智能辅助。Weavefox的出现预示着"Vibe Coding"时代的到来,AI将像真实同事一样参与全流程
2025-07-19 19:39:55
538
原创 【通俗讲解专家】数据漂移和系统退化
摘要: 数据漂移与系统退化是影响AI系统和软硬件性能的两大问题。数据漂移指模型训练数据与实际数据分布发生偏差,表现为三种类型:协变量漂移(输入特征变化)、先验概率漂移(目标变量变化)和概念漂移(输入输出关系变化)。系统退化则是因硬件老化、软件腐化、数据质量下降或环境变化导致的性能衰减。可通过口诀区分:"数据漂移是外因(环境数据变),系统退化是内因(组件老化)"。典型案例包括气候变化影响天气预报模型(数据漂移)和手机长期使用变卡顿(系统退化)。理解二者差异有助于针对性优化系统。
2025-06-29 09:00:00
442
原创 【通俗讲解系列】传统产品和 AI 产品的区别
AI原生产品的本质与特征 AI原生产品是以人工智能为核心构建的智能系统,而非简单添加AI功能。其核心特征包括:天生智能化(AI深度融入产品架构)、数据驱动决策、自适应能力、个性化和持续进化。与传统"产品+AI"的叠加模式(如汽车加装导航)不同,AI原生产品(如特斯拉自动驾驶)实现了"AI×产品"的深度融合,使智能成为产品基因。可用"原生智能,天生如此"口诀记忆,关键差异在于:传统产品是1+1=2的功能叠加,AI原生则是1×1=∞的智能质变。
2025-06-28 12:01:49
355
原创 【通俗讲解系列】什么是模式识别?
摘要:模式识别是通过计算机自动发现数据规律的技术,包含数据采集、特征提取、模式匹配和分类判断四个步骤("采特配判"记忆法)。典型应用包括人脸解锁、疾病诊断、垃圾邮件过滤等生活场景。其核心是提取关键特征进行匹配判断,如同"找茬游戏"般对比异同。该技术广泛应用于图像、语音、文本和生物识别等领域,通过图示可清晰理解其"输入-处理-输出"的完整流程。(约130字)
2025-06-16 07:30:00
378
原创 巨好用的提示词优化工具 Prompt IDE
介绍了一款实用的Prompt IDE工具(https://www.atbigapp.com/prompt),支持提示词版本管理、自动优化和测试功能。该工具可对原始提示词进行细化优化,并提供海量提示词库(https://www.atbigapp.com/prompt-hub)
2025-06-11 07:30:00
1091
原创 开通了 Trae Pro 终于可以开心地 Vibe Coding 了
一位资深Java程序员分享了使用AI编程工具Trae的深度体验。作者目前95%的代码都由AI编写,通过"Vibe Coding"方式用自然语言描述需求让AI完成编码。选择Trae的核心原因:中文支持好,代码修改前可手动确认功能全面:支持规则设置、自定义智能体、MCP等价格有竞争力:Pro版月付10美元,首月仅3美元快速支持Claude、GPT等最新模型作者认为Trae产品体验优秀,相比其他AI编程工具更适合国内程序员,建议传统编码方式的开发者尝试使用。
2025-05-29 01:14:46
2628
3
原创 天工超级智能体是 “AI版Office“?慢!或许还有一段距离
就拿做 PPT 来说,虽然动手操作很耗时,但最费脑筋的还是你 PPT 的结构,需要什么样的素材,用什么样的框架等,而且要能够真正符合你的风格,现在的 AI 还很难实现。虽然,有些产品确实有可圈可点之处,但官方的宣传超过实际,加上自媒体精心选择好的 Case 使劲吹,导致用户预期普遍过高,最后导致上手体验落差大多。天工超级智能体比其他的产品多走了一步,划分文档、PPT、表格、网页、通用等几种模式,垂直度更高,效果理论上能够更好一些。宏观上:天工超级智能体从完全通用的智能体走向场景化,是非常重要的一个转变。
2025-05-26 07:30:00
1065
原创 在生产环境部署 RAG 智能体的 10 条经验教训
AI 智能体展现出令人惊叹的潜力,但企业往往难以在试点后获得实际价值。"上下文悖论"是主要障碍——AI 在复杂任务上表现出色,却难以理解企业特定环境。本文基于 [Contextual AI] 首席执行官 Douwe Kiela 的经验,适合任何部署检索增强生成(RAG)系统的团队。文章总结了为财富 500 强企业扩展 AI 的 10 个关键经验,重点关注系统思维、专业化和生产就绪。我是 Douwe Kiela,[Contextual AI] 的首席执行官。
2025-05-09 07:45:00
783
原创 聊天助手提示词调优案例
提示词工程是一个不断调优的过程,每次调优后都需要测评,最好构造出有代表性的测评数据,避免每次变量不同,输入不同等导致测评的结论不准确。提示词调优没有标准答案,如果效果还不符合预期,需要继续分析继续调优。
2025-05-06 23:59:26
1176
1
原创 系统掌握 MCP 从理论到实践,带你“看见” MCP 的过程
RAG(Retrieval Augmented Generation ,检索增强生成),我们不需要训练和微调大模型,只需要提供和用户提问相关的额外的信息到提示词中,从而可以获得更高质量的回答。通常,需要将资料通过向量生成服务转化为向量,然后存储到向量数据库中。当用户提问时,将用户的问题向量化从向量数据库中进行相似度匹配出 TOP N 个片段,拼接成新的提示词发送给大模型,大模型就可以结合你的资料更好地回答问题了。
2025-05-04 15:08:55
1136
翻译 Anthropic 官方权威揭秘提示工程:如何成为卓越的提示工程师?避免陷入哪些误区?
我认为提示工程就是试图让模型去做事,试图最大限度地利用模型,试图与模型合作完成你原本无法完成的事情。
2025-04-04 22:27:00
487
1
原创 【通俗讲解系列】RAG 和 模型微调的区别
模型微调是指在预训练好的大型模型基础上,使用特定领域的数据进行进一步训练,使模型更适合特定任务或领域。当用户提问时,系统首先从知识库中检索相关信息,然后AI模型结合这些检索到的信息和自身的能力来生成回答。这里,培训过程就是模型微调,而你获得的新技能就是微调后的模型能力。========== 生活化例子 ==================== 概念讲解 ==================== 简单记法 ==================== 图示 ==========etrieve(检索) →。
2025-03-16 11:42:07
492
原创 【通俗讲解系列】人工智能与增强智能
它将计算机系统视为人类能力的扩展工具,重点放在帮助人类做出更好的决策上,而不是代替人类决策。增强智能保留了人类的判断力、创造力和道德观念,同时利用机器的数据处理速度和模式识别能力。想象一个半自动洗衣机与智能助手的组合,你需要选择基本模式,但智能助手会提醒你:“这些是丝绸衣物,建议使用低温模式”,或"这批衣服可能需要预先处理污渍"。想象一下一个全自动洗衣机,你只需按下按钮,它会自己完成所有洗衣过程——选择水量、温度、洗涤时间,甚至根据衣物重量调整各项参数。========== 图示 ==========
2025-03-04 22:42:50
339
原创 盘点那些免费好用支持 DeepSeek-R1 满血版的平台
DeepSeek 官网使用 DeepSeek-R1 经常服务不可用。有很多解决办法,其中最简单的就是找到直接打开就可以用的网站。这篇文章为大家盘点这些开箱即用的网站。本文介绍了多种可以立即使用DeepSeek-R1的平台,解决了官方服务不稳定的问题。这些替代方案让用户不必再受官方服务不稳定的困扰,可以根据自己的具体需求选择合适的平台,享受 DeepSeek-R1 的强大功能。全套北京大学 DeepSeek 教程来了!别再花钱买了(附2份 PDF,免费领取)全套清华大学DeepSeek教程来了!
2025-03-02 17:47:26
1364
原创 AI 正在创造一代不懂编程的程序员
这篇文章探讨了 AI 对程序员能力的影响,指出过度依赖 AI 导致多项基础能力衰退。作者提出“无 AI 日”实践方案及一系列使用规则,如先思考再用 AI、分级使用、培养新能力等,并强调要将 AI 定位为辅助工具,保持学习心态,提升核心竞争力。文章引起强烈反响。
2025-02-07 21:09:37
1317
8
原创 重生之我在 Claude 上 “复刻”了 DeepSeek-R1 效果
本文从用户需求出发,通过提示词工程在 Claude 3.5 Sonnet 上实现了类似 DeepSeek-R1 的思考过程可视化。尽管无法完全复制其深度思考能力,但通过提取思考模式并结合 Claude 特点,探索出一种提升模型透明度的方法。优秀的提示词往往来自于反复调优和实践验证在编写提示词时,参考目标模型的反馈很有帮助提示词的价值不仅在于提升输出质量,更在于帮助我们理解模型的思维方式在新一代大模型时代,提示词工程正从技巧积累转向帮助用户优化需求表达、理解模型思维。
2025-02-06 23:56:17
1256
原创 DeepSeek访问失败?这些可靠替代方案让你轻松使用
随着 DeepSeek R1 模型的火热,其服务不稳定的问题也日益突出。本文为大家梳理了几种可行的替代方案,各有优劣:对普通用户来说,第三方平台的网页、客户端和 API 服务可能是最便捷的选择。秘塔 AI 搜索提供满血版模型且每天有免费额度,是较为理想的替代方案;DeepSeek-R1 虽然只支持小参数模型,但胜在稳定可靠;超算互联网平台则值得期待其即将推出的大参数版本;lmarena.ai 则侧重于模型测试,提供了 deepseek-r1 ,也提供了很多其他模型。
2025-02-05 21:38:36
5261
4
原创 引领产品创新: 2025 年 PM 效能倍增法则
除了核心应用场景外,AI 工具在产品管理中还有众多具体应用。这些用例不仅有助于掌握 AI 提示工程技巧,更能帮助产品经理将 AI 无缝整合到日常工作流程中。SQL 查询优化产品框架应用设计评审分析影响力评估邮件快速处理技术主题解析访谈指南制定功能结果报告编辑用户反馈分析用户研究资料管理每个场景的详细指南可通过相应链接获取,这些方法都经过实际验证,能显著提升产品管理效率。3 PM 使用 AI 的常见误区作为产品经理,我也在 AI 应用实践中经历过这些挑战,现在和你分享这些经验。
2025-01-26 20:47:58
1488
原创 六年大厂开发,为何我开始学习提示词?
如果将提示词类比为设计模式,那么这些“战略”层面的原则就像咱们开发同学所熟知的软件工程的经典原则:“高内聚、低耦合”、“隐藏复杂度”、“计算机领域的任何问题,都是可以通过新增一个间接的中间层来解决的”等,以及设计模式的七大原则。当提示词已接近模型的能力上限,依然无法获得理想的结果时,可能需要考虑其他解决方案,如切换到更高级的模型、进行模型微调、采用多智能体协作,或重新评估任务拆解的合理性。,AI可以先用生活化的例子帮助我理解复杂概念,再提供详细解释,最后用便于记忆的方式进行总结,极大地提升了我的学习效率。
2024-10-26 20:21:29
1912
6
原创 软考高级数据库系统:分布式数据库系统-分布性、共享性、可用性、自治性
每个节点可以自主决定数据的存储、管理方式,甚至可以决定哪些数据需要与其他节点共享。这意味着无论用户在何处或使用何种设备,都可以访问同样的数据,确保数据一致性和协同工作。可用性指系统能够持续提供服务的能力,即使某些节点或服务器发生故障,系统的其他部分仍然可以正常工作。想象一个连锁超市系统,每个城市都有自己的分店,每个分店都有一个库存数据库。分布式数据库系统的几个关键特性包括分布性、共享性、可用性和自治性,它们各自对应不同的系统设计和功能目标。========== 概念讲解 ==========
2024-10-24 09:15:00
719
原创 软考高级:嵌入式实时系统调度算法 AI 解读
时间片轮转调度算法就像是大家排队玩游戏,每个人有固定的时间(比如每人玩5分钟),时间到了不管你是否完成,都要轮到下一个人。抢占式优先级调度算法则更像是游乐园里有工作人员不断监控,看到VIP来了就会立刻让正在玩的普通玩家停止,让VIP先玩。优先级调度算法像是有VIP通道的游乐园,优先级高的玩家(VIP)可以插队,普通玩家得排在后面。========== 生活化例子 ==================== 概念讲解 ==================== 简单记法 ==========
2024-10-24 09:00:00
420
原创 软考高级:嵌入式冯诺依曼体系和哈佛体系 AI 解读
可以想象冯诺依曼体系像是你在一个房间里,有一张书桌,你可以在这张桌子上放你的作业本(数据)和参考书(指令)。这意味着计算机在不同时间只能通过这条总线获取指令或数据,导致了所谓的“冯诺依曼瓶颈”,即数据传输速率限制了计算机的处理速度。冯诺依曼体系(Von Neumann architecture)和哈佛体系(Harvard architecture)是两种计算机体系结构,它们的主要区别在于指令和数据的存储方式。而哈佛体系则像是你有两个房间,一个房间专门放作业本,另一个房间专门放参考书。
2024-10-24 08:45:00
426
原创 AI 解读软考高级操作系统顺序存取、直接存取、随机存取、相联存取的区别
这是最基础的存取方式,数据是按顺序存放的,读取时也必须按顺序逐个读取,无法跳过。在这种方式下,数据被分成了几个块,你可以直接跳转到某个大块的位置,但在大块内的精确定位仍需要顺序访问。例如传统的磁盘存储就是这种方式,允许快速找到某个大块的数据,但要找到具体的字节位置,还需要一些调整。想象你在找一本图书馆的书,不是根据书的位置或编号去找,而是根据你记住的关键词或书名,系统根据内容帮你找。这就是相联存取,你不需要知道具体位置,数据会根据你提供的信息找到。========== 生活化例子 ==========
2024-10-23 07:00:00
919
2013聚划算砸冰砖抢红包活动及辅助技巧
2013-11-24
2013聚划算砸冰砖抢红包辅助v3.5
2013-11-23
2013天猫双十一抢红包助手v4.0(红包后自动开新页面+全自动抢红包
2013-11-07
3013天猫双十一抢红包助v1.5
2013-11-05
天猫双十一抢红包助手v5.0(红包后自动开新页面+全自动抢红包)
2013-11-07
磁盘文件隐藏和美化助手5.0(Win7版).rar
2013-03-12
2013双十二万能淘宝做任务领红包辅助4.0
2013-11-30
2013双十二万能淘宝做任务领红包辅助3.0.
2013-11-29
Word&Pdf2txt1.5
2013-05-18
Word&Pdf2txt1.0.exe
2013-05-17
what to look for in a code review.pdf
2020-10-09
把文件隐藏到图片里 (javafx精美软件)
2015-06-22
JRegistry-1.8java操作注册表最新资料(推荐).rar
2014-04-22
明明如月Md5查看修改工具
2016-04-27
Java核心技术,第二卷,第10版(英文高清文字版)
2018-09-19
美女时钟V2.2.zip
2014-03-30
明明如月Md5查看修改工具3.0
2016-04-27
明明如月短网址2.0
2015-10-11
2015年双11淘宝密令抢红包神器 4.0
2015-11-08
明明如月access2003密码找回助手v2.0
2014-06-19
2015双11密令抢红包工具3.3
2015-11-06
C#精美记事本.rar
2014-04-27
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人