
机器人
文章平均质量分 93
武子康
Hi, I'm Zikang / 武子康
好奇心驱动的探索者 | INTJ / INFJ
我热爱探索一切值得深究的事物。对技术、成长、效率、认知、人生有着持续的好奇心和行动力。
坚信「飞轮效应」,相信每一次微小的积累,终将带来深远的改变。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
AI-调查研究-96-具身智能 机器人场景测试全攻略:从极端环境到实时仿真
机器人在进入实际应用前,必须经过系统化的场景测试与极端情况模拟,以确保其鲁棒性与安全性。测试涵盖环境、负载及异常情况三大维度,例如极端温度、复杂地形、传感器失效及通信中断等。传统手工测试存在效率低、难以复现及数据不完整的局限,而自动化测试通过可编程性、可重复性和高效率显著提升覆盖率与可靠性。实时仿真是其中的核心手段,借助物理引擎和虚拟环境可安全模拟危险或罕见场景,并支持加速与分布式测试,从而快速迭代和优化算法。通过传感器异常注入、机械系统故障模拟及通信系统异常测试,能够验证系统的容错机制与降级策略,符合IS原创 2025-10-07 10:30:50 · 605 阅读 · 0 评论 -
AI-调查研究-95-具身智能 机器人场景测试全解析:从极端环境仿真到自动化故障注入
在机器人进入实际应用前,必须进行系统化的场景测试,涵盖极端天气、复杂地形、电磁干扰和突发状况等边界条件。传统手工测试覆盖率有限,而自动化测试与仿真技术可将罕见场景转化为可重复流程,大幅提升效率与安全性。通过高精度数字孪生环境,开发者可模拟暴雨低能见度、多行人突发穿行、传感器失效等复杂情况,全面检验系统鲁棒性。结合故障注入工具、域随机化和自动调度脚本,能够批量生成环境变体,发现隐藏缺陷并验证容错机制。配合分级评估标准与自动化报告,测试团队可量化定位精度、避障能力和急停响应等核心指标。长期积累数据后,可形成性能原创 2025-10-05 11:36:51 · 871 阅读 · 0 评论 -
AI-调查研究-94-具身智能 机器人算法真机验证全流程解析:测试平台、部署方案与接口对接
测试平台选择、部署流程设计与接口对接三个方面。测试平台方面,TurtleBot3系列在移动机器人领域因其开放架构和ROS兼容性广受应用,Dobot Magician、xArm、OpenManipulator-X等机械臂则提供了从入门到科研级的不同选择,高端平台如Franka Panda与UR系列更是学术界的标杆。部署流程通常采用Docker容器化结合CI/CD,实现环境一致性与高效分发,同时需关注网络配置、启动顺序和故障恢复。接口对接方面,ROS生态提供了丰富的驱动支持和硬件接口框架,开发者可通过标准话题和原创 2025-10-04 12:13:25 · 824 阅读 · 0 评论 -
AI-调查研究-93-具身智能 机器人仿真工具大全:从Gazebo到Isaac Sim的全面对比 六大仿真平台
仿真工具是机器人研发的重要组成部分,可在无风险环境下进行算法验证与系统调试,加速迭代。Gazebo作为开源标杆,支持多物理引擎与丰富传感器,深度融合ROS,适用于学术与工业研发,但硬件需求高。NVIDIA Isaac Sim依托Omniverse与RTX技术,具备超高图形保真与GPU加速物理能力,适合数字孪生与AI训练,面向企业级用户。Webots界面直观、跨平台,兼容多语言,教学价值突出,适合教育与初学者。CoppeliaSim功能强大,支持多机器人协同和灵活脚本控制,适合复杂生产线与科研验证。原创 2025-10-03 14:25:43 · 719 阅读 · 0 评论 -
AI-调查研究-92-具身智能 机器人运动控制全解析:从传统模型到深度学习方法
机器人运动控制可分为两大类:传统基于模型的方法与基于深度学习的智能控制。前者强调运动学/动力学建模、轨迹规划与反馈控制,典型实现依托ROS2控制框架和MoveIt。通过硬件抽象层与控制器接口的解耦,开发者可灵活配置PID、自适应或阻抗控制器,实现高频实时控制,适配从工业机械臂到移动机器人等多场景需求。MoveIt则提供逆运动学、轨迹优化与碰撞检测等功能,已成为业界通用的运动规划工具。相比之下,深度学习控制主要依托强化学习框架(如Gym、Stable Baselines3、RLlib)结合仿真引擎(MuJoC原创 2025-10-02 15:32:27 · 1873 阅读 · 0 评论 -
AI-调查研究-91-具身智能 多模态数据标注工具全景调研:从LabelStudio到3D点云 视觉与点云标注工具
在机器人视觉与感知模型的训练中,高质量的多模态数据标注工具至关重要。当前主流方案涵盖了2D图像、视频、文本、音频及3D点云等多模态场景。LabelStudio 以高度可定制化和AI辅助标注见长,适合企业级和研究级项目;CVAT 由 Intel 推出,功能专业,尤其在视频标注和协作管理方面表现突出。轻量级工具如 LabelImg、LabelMe 则便于个人快速构建小型数据集。微软 VoTT 提供跨平台视频标注能力,而交互式工具 EISeg 与 RITM 借助深度学习显著提升分割效率。在3D领域,point-c原创 2025-09-30 09:33:09 · 1092 阅读 · 0 评论 -
AI-调查研究-90-具身智能 机器人数据采集与通信中间件全面解析:ROS/ROS2、LCM 与工业总线对比
现代机器人系统需要高效的数据采集和通信中间件来连接传感器、控制器和计算单元,实现感知、控制与决策的协同工作。ROS作为开源事实标准,采用发布/订阅模式,支持话题、服务和参数服务器,提供丰富的驱动和工具,如rosbag可用于数据录制和回放。ROS1已广泛应用于工业与学术界,而ROS2基于DDS实现,具备更高的实时性、安全性和跨平台能力,支持QoS策略与实时操作系统集成,逐渐取代ROS1成为主流。相比之下,LCM专注于高效通信但缺乏生态支持,ZeroMQ、Kafka等通用队列需额外开发协议,应用较少。工业场景中原创 2025-09-29 10:36:00 · 1357 阅读 · 0 评论 -
AI-调查研究-79-LFP磷酸铁锂 不同充电方式下的LFP电池衰减规律
近年来,LFP(磷酸铁锂)电池在特斯拉等车型上的广泛应用,逐渐积累了真实世界的寿命数据和用户经验。研究与实测结果表明,LFP电池在前数万公里使用中容量保持率普遍高于95%,长期衰减率低于三元锂电池,预计20万公里后仍可维持80%以上容量。实验室对比显示,不同充电策略(如80%与100%满充)对寿命影响有限,主要差异出现在高温环境下:高SOC结合高温会加速衰退。实际车主经验也印证,日常100%充电并不会显著缩短寿命,电池管理系统(BMS)的校准过程导致的容量波动是常见现象。综合数据与案例可见,影响寿命的核心因原创 2025-09-16 09:50:49 · 802 阅读 · 0 评论 -
AI-调查研究-78-LFP磷酸铁锂 浅充频繁 vs. 深放深充:LFP电池寿命影响全解析
浅充频繁与深放深充对LFP(磷酸铁锂)电池寿命影响差异显著。研究表明,浅循环(如30%-80%区间)能有效降低电极应力与副反应,循环寿命可提升至3000-5000次,而深循环(0-100%)通常仅500-1000次。LFP电池虽具更高热稳定性与耐深放特性,但长期深度放电仍会导致容量衰减加快、充电时间延长及电压平台畸变。最佳实践为日常保持30%-80%电量、随用随充,并每月进行一次完整循环以校准SOC。极端环境亦需特别管理:高温下避免满电停放,低温时充电前应预热,快充宜控制在温度0-45℃范围内并以80%为止原创 2025-09-15 09:58:04 · 1040 阅读 · 0 评论 -
AI-调查研究-77-LFP磷酸铁锂电池 vs 三元锂:化学原理、老化机制与应用差异全解析
磷酸铁锂(LFP)电池凭借其稳定的橄榄石型晶体结构,在循环寿命和安全性上显著优于三元锂(NMC/NCA)电池。LFP在充放电过程中体积变化仅约6.7%,远低于层状三元材料的10-20%,因而长期循环不易发生结构坍塌。实验数据显示,LFP电池在25℃条件下可实现3000-10000次循环,远超NMC的1500-2000次。其热失控温度高达270-300℃,且不释放氧气,安全性优于NMC/NCA。老化机制方面,LFP主要受铁离子溶出影响,衰减过程相对平稳;而NMC在高压下易发生氧析出、电解液分解及结构坍塌。原创 2025-09-13 09:32:18 · 1338 阅读 · 0 评论 -
AI-调查研究-76-具身智能 当机器人走进生活:具身智能对就业与社会结构的深远影响
具身智能的广泛应用正在深刻改变社会结构。自动化将取代大量重复性岗位,同时创造新兴职业,导致就业市场出现“职业极化”。尽管生产率和安全性提升,但技能错配与收入不平等风险加剧,区域发展失衡问题凸显。应对策略包括职业再培训、终身学习制度建设,以及发展健康护理、教育和创意产业等新赛道。与此同时,机器人税、全民基本收入、公共信托和数据股息等新型分配机制正在探索,以缓解社会冲击。然而,智能化便利也带来心理依赖与生活技能退化风险,甚至影响认知与情感能力。为保持核心竞争力,社会需要在教育改革、人机协作机制、社会互动保护和制原创 2025-09-12 10:08:00 · 959 阅读 · 0 评论 -
AI-调查研究-75-具身智能 从LLM到LBM:大模型驱动下的机器人分层控制架构
大型语言模型(LLM)与机器人实时控制的融合,正推动机器人智能化升级。LLM在指令理解、任务规划和环境适应性方面展现出巨大潜力,使机器人能够处理开放环境中的复杂任务。然而,直接应用LLM也带来安全性、实时性和可靠性等瓶颈:推理延迟难以满足毫秒级控制需求,输出缺乏形式化验证,且易受对抗样本干扰。为此,分层架构成为主流方案:高层由LLM负责认知与规划,中间层完成任务到动作的映射,底层执行实时控制。新兴的“行为大模型”(LBM)进一步突破,将感知、决策与执行闭环整合,提升机器人自主性。原创 2025-09-11 09:37:18 · 1434 阅读 · 0 评论 -
AI-调查研究-74-具身智能 机器人学习新突破:元学习与仿真到现实迁移的挑战与机遇
具身智能体要实现高效学习与技能迁移,核心在于提升少样本学习与跨任务泛化能力。当前机器人学习面临多重挑战:一是任务间的迁移难度大,已学技能难以快速应用到相似任务;二是不同机器人形态和传感系统的异构性增加了适配难度;三是现有强化学习与模仿学习在样本效率和泛化能力上存在局限。为突破瓶颈,研究重点聚焦于元学习、少样本模仿学习和多任务预训练策略。例如,MAML等元学习框架可显著提升新任务适应速度,大规模多任务预训练则能为下游原创 2025-09-10 10:06:31 · 1092 阅读 · 0 评论 -
AI-调查研究-73-具身智能 未来十年具身智能发展趋势:从技术融合到产业化落地
未来十年,具身智能将迎来范式跃迁:以“预训练世界模型+在线学习”为核心,软硬件协同与跨学科融合加速,数字孪生、群体协作、类脑芯片成为突破点;家服、医疗、工业、太空等场景率先落地,人形与专用机器人走向规模化,成本下降、ROI缩短。同步带来安全验证、能耗与伦理合规压力,亟须标准、责任与透明机制。总体趋势:从零散试点迈向通用智能体与人机共生的产业化时代。原创 2025-09-09 09:22:06 · 1348 阅读 · 0 评论 -
AI-调查研究-72-具身智能 发展挑战全解析:数据、硬件、算力与商业化的多维瓶颈
具身智能的发展面临多重挑战。首先是数据匮乏与泛化不足:现实数据采集成本高、风险大且难以覆盖复杂多样的场景,导致模型在新环境中表现显著下降。仿真虽能加速训练,但视觉、物理和逻辑差异造成Sim2Real迁移性能下降40-60%。其次是硬件与环境鲁棒性限制:现有电池续航短、执行机构易磨损、传感器受光照和噪声影响大,真实环境中的动态障碍和复杂地形进一步加剧不确定性。第三是训练效率与计算成本瓶颈:强化学习和大模型微调需海量算力和长周期训练,动辄耗资数百万美元。第四是高成本与商业化困境:核心部件昂贵,维护与集成费用高,原创 2025-09-08 09:36:04 · 1071 阅读 · 0 评论 -
AI-调查研究-71-具身智能 案例分析:从ROS到Tesla Optimus的开源与商业化实践
具身智能在架构、能力与应用上的典型实践。开源方面,ROS机器人操作系统以模块化设计和丰富功能包库成为行业事实标准,广泛应用于SLAM建图、自主导航、机械臂控制和科研教育,其开放共享与全球社区推动了机器人技术的快速迭代与普及。商业方面,特斯拉Optimus依托电动车与自动驾驶积累,融合电机、电池、FSD感知与AI算法,展现出通用人形机器人的发展潜力,从工厂任务到未来家用助手,其商业化路径清晰。其他案例如波士顿动力Atlas展示了顶尖动态控制与人机交互能力原创 2025-09-06 08:57:53 · 1240 阅读 · 0 评论 -
AI-调查研究-70-具身智能 产业生态与发展趋势:从全球格局到技术演进的全景解读
具身智能(Embodied AI)正在引领新一轮科技革命,市场规模从2024年的25.3亿美元预计增长至2033年的87.6亿美元,年复合增长率达15%。其应用涵盖智能制造、医疗健康、服务行业和特种作业,广泛受政策支持:中国、美国、欧盟、日本均将其列为战略重点。全球市场格局中,亚太占40%份额,其中中国居主导地位。技术演进路径集中在多模态感知、云边协同和类人运动控制。各大科技巨头(如英伟达、OpenAI、Google、特斯拉)与专业机器人公司(如波士顿动力、Agility、优必选、Unitree)积极布局,原创 2025-09-05 09:30:57 · 969 阅读 · 0 评论 -
AI-调查研究-69-具身智能 关键能力全景解析:算法、硬件、仿真与数据的系统综述
具身智能的发展依赖算法、硬件、仿真环境、嵌入式系统和数据处理的全方位支撑。智能算法是核心大脑,涵盖感知、认知和控制三层:感知侧通过视觉、听觉和多模态融合实现环境理解;认知层借助规划、强化学习与符号推理完成决策;控制层则确保精确动作执行,并结合端到端学习与混合智能架构优化性能。硬件作为“躯体”,包括高精度传感器、伺服驱动和异构计算平台,其性能直接决定智能水平。仿真环境提供安全高效的“数字训练场”,显著降低现实试错成本,支持大规模并行训练。嵌入式系统则构建从终端到云端的分层协同架构,保障实时性与稳定性。原创 2025-09-04 09:48:05 · 1196 阅读 · 0 评论 -
AI-调查研究-68-具身智能 应用全景:家庭、工业、医疗、交通到虚拟交互的未来趋势
具身智能在多个领域展现出广泛应用潜力。在家庭服务场景中,清洁类、陪伴型及送物机器人占据主要市场,预计2030年规模突破500亿美元。当前挑战包括复杂环境下的识别与精细操作,但多模态感知和柔性机械臂等技术将推动发展。工业制造与物流方面,传统机械臂正向“移动+操作”转型,新一代机器人通过多模态融合和实时规划提升柔性生产效率,2030年市场规模预计达260亿美元。医疗领域应用涵盖手术、康复与护理,重点在于高精度、安全性与智能交互,未来将演进为智能医疗助手。自动驾驶与智能交通则重塑出行模式,L4级自动驾驶、车路协同原创 2025-09-03 12:17:48 · 1862 阅读 · 0 评论 -
AI-调查研究-67-具身智能 核心技术构成全解析:感知、决策、学习与交互的闭环系统
具身智能的技术构成可概括为“感知—决策—控制—学习—交互”闭环系统。感知层由多种传感器(视觉、雷达、IMU、触觉等)和算法(SLAM、目标检测、多模态融合)组成,为机器人提供环境建模与物体识别能力。决策控制模块是核心“大脑”,高层采用深度学习、规划与强化学习进行策略生成,低层通过PID、MPC等算法实现精确动作执行,并逐渐发展为端到端和分布式架构。学习与适应依托深度强化学习、模仿学习和进化算法,辅以仿真训练、迁移学习提升现实表现。多模态感知与交互使系统具备视觉、语音、触觉等协同理解与自然交互能力。原创 2025-09-02 09:56:34 · 813 阅读 · 0 评论 -
AI-调查研究-66-机器人 机械臂 软件算法体系:轨迹规划·视觉定位·力控策略
机械臂的软件算法涵盖运动学、轨迹规划、视觉定位、AI智能以及力控策略等多个层面。运动学方面包括正运动学和逆运动学计算,分别用于求解末端位姿和关节角度;轨迹规划则通过多项式插值、梯形或S型曲线等方法生成平滑路径,并结合笛卡尔插补实现复杂运动。高级方法涉及时间/能耗最优与避障算法(RRT、PRM)。视觉与定位通过相机和深度传感器结合目标检测、位姿估计和3D重建,广泛应用于分拣、装配和避障。AI方面,强化学习和模仿学习提升了机械臂在动态环境中的适应与自学习能力,同时支持预测性维护与多机协同。原创 2025-09-01 09:41:41 · 1120 阅读 · 0 评论 -
AI-调查研究-65-机器人 机械臂控制技术的前世今生:从PLC到MPC
机械臂系统的实现需要软硬件协同,从控制层到安全机制均有严格要求。控制系统方面,PLC以高可靠性和模块化特性承担产线级协调和安全联锁,并通过ProfiNet、EtherCAT等工业总线与机器人控制器协作;底层运动控制器需实现毫秒级插补和力矩补偿。随着嵌入式架构发展,关节级分布式控制(如STM32+驱动芯片)简化布线并增强实时性,协作机器人常采用双闭环与FPGA方案满足ISO/TS 15066安全要求。ROS作为上层操作系统提供任务规划、感知与运动控制的开源框架,推动软硬件解耦与标准化。原创 2025-08-30 11:03:33 · 1294 阅读 · 0 评论 -
AI-调查研究-64-机器人 从零构建机械臂:电机、减速器、传感器与控制系统全剖析
构建与控制一台高性能机械臂,需要融合电机驱动、减速器、机械结构、传感器系统、控制器与末端执行器等多个核心模块。在硬件层面,从RC舵机到集成关节模组,涵盖入门到工业级全线方案;减速器如谐波、RV、行星齿轮等类型各具优势,满足不同精度与负载需求;结构材料则兼顾轻量与刚性,多采用碳纤维或航空铝合金。控制系统包括运动控制器与驱动电路,支持实时反馈与安全机制,常见协议为EtherCAT。传感器融合力控、视觉、位置等信息,实现高精度交互控制。末端执行器种类丰富,从夹爪到焊枪广泛应用于制造、装配、食品等领域。整套技术体系原创 2025-08-29 08:55:03 · 889 阅读 · 0 评论 -
AI-调查研究-63-机器人 机械臂在现代制造业的全场景应用 正在取代人类的哪些工作?
现代机械臂在工业自动化中承担多种关键任务:在搬运方面,通过Pick-and-Place、码垛、上下料等方式提升效率与安全;在装配中,从微型元件到大型结构实现高精度组装;焊接领域涵盖弧焊、点焊、激光焊等工艺,保障一致性与生产节拍;喷涂与打磨作业中,其高重复性确保涂层均匀与表面质量;非结构化抓取则依赖AI与多模态感知实现柔性拣选;绘图加工中可执行3D打印、数控铣削、激光打标等多工艺融合;检测测试方面,可完成尺寸测量、功能验证与表面缺陷识别,推动智能制造发展。原创 2025-08-28 09:24:56 · 930 阅读 · 0 评论 -
AI-调查研究-62-机器人 机械臂五大应用场景详解:从焊接到手术,从农田到太空
机械臂作为现代自动化的重要工具,已广泛应用于制造、医疗、农业、服务与科研等多个领域。在制造业中,其在焊接、涂装、装配、电子贴片与检测等方面极大提升了效率与精度;医疗领域通过微创手术、康复训练与护理辅助等实现精准治疗;农业机械臂则用于果蔬采摘、挤奶、施肥等任务,提高了作业智能化水平;服务业中涵盖烹饪、调饮、迎宾及家务等环节,显著改善服务体验;科研教育则借助机械臂进行算法验证、实验自动化及教学训练。随着AI与传感技术进步,机械臂正朝着更智能、更安全、更灵活方向演进,成为推动社会进步的重要力量。原创 2025-08-27 10:33:56 · 816 阅读 · 0 评论 -
AI-调查研究-61-机器人 工业机器人全谱系解析:关节型、SCARA、直角坐标、Delta与协作臂详解
关节型机械臂自由度高、仿人设计强,适用于汽车制造、焊接、装配等复杂轨迹任务;SCARA臂则以高速、平面精密装配见长,广泛用于电子、半导体行业;直角坐标型结构刚性强、适合大负载与搬运场景;Delta机器人具备极高速度和重复精度,适用于食品包装、电子分拣等轻型任务;协作机械臂主打安全、灵活与易用,适合人机共工场景。此外,圆柱与极坐标型逐渐被淘汰,而双臂、软体与模块化重构等新型机器人正在兴起。整体趋势向更智能、更柔性、更安全发展,持续推动智能制造升级。原创 2025-08-26 09:01:35 · 1159 阅读 · 0 评论 -
AI-调查研究-60-机器人 机械臂技术发展趋势详解:工业、服务与DIY三大阵营全解析
近年来,机械臂技术发展迅速,呈现高精度、协作化、轻量化、智能化和互联化五大趋势。工业机械臂在重复精度与负载能力上持续突破,协作机器人则因安全灵活广泛应用于中小企业。轻量级机械臂配合移动平台适用于多样场景,视觉与AI技术的集成使其更智能易用。服务型机械臂广泛用于物流、医疗、餐饮与农业,推动自动化普及。与此同时,DIY与教育机械臂因成本下降和开源支持而快速普及,虽性能与工业级仍有差距,但已广泛用于教学、创客和轻度自动化任务,预计未来几年将在多个领域实现低门槛部署。原创 2025-08-25 09:16:21 · 998 阅读 · 0 评论 -
AI-调查研究-59-机器人 行业职业地图:发展路径、技能要求与薪资全解读
机器人行业正处于快速发展阶段,对具备机械、电子、控制与软件交叉能力的复合型人才需求激增。职业路径起始于助理工程师,随着项目经验积累,工程师可成长为中高层技术负责人或管理者。主流技术栈涵盖ROS、OpenCV、运动控制、SLAM等,强调“做中学”的工程实践。美国年薪中位数达10-15万美元,中国薪酬呈现快速上升趋势,头部企业应届生待遇达50万以上。未来趋势显示机器人人才将持续紧缺,具备系统设计能力与跨学科协作力者将脱颖而出。持续学习与国际视野将成为核心竞争力。原创 2025-08-24 09:53:50 · 1444 阅读 · 0 评论 -
AI-调查研究-58-机器人 从工厂到家庭,机器人正悄悄改变世界的每个角落
机器人作为通用技术,已广泛应用于制造、医疗、农业、物流与家庭等领域。在制造业,工业机器人以六轴机械臂为核心,实现高精度自动化生产;医疗领域中,手术机器人已大规模落地,康复与护理机器人正逐步商业化;农业机器人通过自动驾驶、智能喷洒与采摘等缓解劳动力紧缺;物流仓储通过AGV/AMR与终端配送机器人大幅提升效率;家庭服务机器人涵盖清洁、陪护与教育娱乐,持续优化用户体验。各行业的技术发展路径各异,但共同呈现出智能化、网络化与融合化趋势。原创 2025-08-22 10:19:33 · 846 阅读 · 0 评论 -
AI-调查研究-57-机器人 五大类机器人指南:工业/服务/人形/移动/特种详解
机器人作为现代智能装备的核心,广泛应用于工业制造、医疗服务、灾难救援等领域。根据功能和形态,可分为五大类:工业机器人是制造业自动化主力,具备高精度、多自由度的机械臂结构;服务机器人广泛应用于家庭、医疗、物流等,强调人机交互和环境适应能力;人形机器人模仿人类外形与动作,融合AI与控制技术,推动交叉学科发展;移动机器人拥有自主导航与路径规划能力,覆盖物流、农业、清洁等场景;特种机器人则用于极端环境任务,如军事、深海、太空等,代表机器人技术的最前沿。随着AI、传感器、通信等技术进步,各类机器人正加速智能原创 2025-08-21 09:55:14 · 1130 阅读 · 0 评论 -
AI-调查研究-56-机器人 技术迭代:从液压驱动到AI协作的进化之路
机器人技术经历了从早期液压驱动和模拟控制,到现代电驱动、数字控制和感知系统的深刻演化。硬布线、开环控制、机械限位等传统方案因性能局限逐渐被淘汰。如今,电动伺服、PLC控制、视觉与力觉传感、ROS系统等技术构成主流,广泛应用于工业、物流、医疗等场景。与此同时,人工智能、群体智能、多模态感知、仿生结构等前沿方向正在重塑机器人能力边界,使其具备学习、适应、协作与高复杂任务执行能力,推动机器人从“自动化设备”走向“智能体”,不断拓展应用疆界。原创 2025-08-20 09:12:40 · 996 阅读 · 0 评论 -
AI-调查研究-55-机器人 百年进化史:从Unimate到人形智能体的技术跃迁
机器人技术自1921年“Robot”一词首次提出以来,经历了从科幻走向现实的百年演进。从1959年Unimate开创工业机器人时代开始,机器人经历了液压驱动向电动伺服、磁鼓控制向微处理器控制的关键技术变革。70年代至90年代,德国KUKA、日本川崎、美国Unimation等公司推动了关节结构、传感融合、机器视觉等方面的突破。1988年HelpMate标志服务机器人商业化的起点。进入21世纪,机器人加速向医疗、家庭、物流等领域扩展,波士顿动力的人形与四足机器人展现出极强的环境适应性与运动能力。原创 2025-08-19 09:40:37 · 1154 阅读 · 0 评论