岛屿数量(BFS、DFS)

这篇博客介绍了一种解决岛屿数量的方法,通过遍历01矩阵,利用BFS(广度优先搜索)和DFS(深度优先搜索)算法来判断矩阵中岛屿的数量。在矩阵中,1代表陆地,0代表海洋,且只有上下左右相邻的1才构成岛屿。作者提供了详细的BFS和DFS实现,并给出了一个示例输入及其对应的输出为3。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给一个01矩阵,1代表是陆地,0代表海洋, 如果两个1相邻,那么这两个1属于同一个岛。我们只考虑上下左右为相邻。
岛屿: 相邻陆地可以组成一个岛屿(相邻:上下左右) 判断岛屿个数。
例如:
输入
[
[1,1,0,0,0],
[0,1,0,1,1],
[0,0,0,1,1],
[0,0,0,0,0],
[0,0,1,1,1]
]
对应的输出为3

package com.wy.搜索;

import java.util.LinkedList;
import java.util.Queue;

/**
 * 思路:
 * 1.遍历整块大陆,横着竖着遍历都可以
 * 2.第一次碰到陆地的时候,就知道这十块岛屿了,所以将这块陆地放入探险队列,岛屿数量加1
 * 3.然后我们将这块岛屿的陆地探索完。每一次将这块陆地周围(上下左右)的陆地放入队列,然后将这块陆地标记为已探索(这里就直接置为0了)
 * 4.当探险队列为空时,表示这块岛屿的陆地全部被探索完了,我们继续寻找下一块陆地
 *
 * 解法:
 * 1.BFS 使用队列
 * 2.DFS 使用栈
 * 3.并查集
 */
public class 岛屿数量 {

    public int solve(char grid[][]){
        if(grid == null || grid.length == 0){
            return 0;
        }
        int nr = grid.length;
        int nc = grid[0].length;
        int num_land = 0;
        for (int i = 0; i < nr; i++) {
            for (int j = 0; j < nc; j++) {
                if(grid[i][j] == '1'){
                    num_land++;
//                    dfs(grid, i, j);
                    bfs(grid, i, j);
                }
            }
        }
        return num_land;
    }
    //1.DFS
    public void dfs(char grid[][], int r, int c){
        int nr = grid.length;
        int nc = grid[0].length;
        if(r < 0 || c < 0 || r >= nr || c >= nc || grid[r][c] == '0'){
            return;
        }
        grid[r][c] = '0';
        dfs(grid, r - 1, c);
        dfs(grid, r + 1, c);
        dfs(grid, r, c - 1);
        dfs(grid, r, c + 1);
    }
    //2.BFS
    public void bfs(char grid[][], int r, int c){
        Queue<Integer> queue = new LinkedList<>();
        int nr = grid.length;
        int nc = grid[0].length;
        queue.add(r * nc + c);
        grid[r][c] = '0';
        while (!queue.isEmpty()){
            int index = queue.poll();
            r = index / nc;
            c = index % nc;
            if(r - 1 >= 0 && grid[r - 1][c] == '1'){
                grid[r - 1][c] = '0';
                queue.add((r - 1) * nc + c);
            }
            if(r + 1 < nr && grid[r + 1][c] == '1'){
                grid[r + 1][c] = '0';
                queue.add((r + 1) * nc + c);
            }
            if(c - 1 >= 0 && grid[r][c - 1] == '1'){
                grid[r][c - 1] = '0';
                queue.add(r * nc + c - 1);
            }
            if(c + 1 < nc && grid[r][c + 1] == '1'){
                grid[r][c + 1] = '0';
                queue.add(r * nc + c + 1);
            }
        }
    }
}

### BFS DFS 的常见题型及应用场景 #### 一、BFS(广度优先搜索) BFS 是一种逐层扩展的遍历方式,适用于解决最短路径类问题以及层次关系明显的问题。 ##### 应用场景 1. **图中的最短路径问题** 如果每条边权重相同,则可以利用 BFS 找到两点之间的最短距离。例如,在棋盘上计算骑士移动所需的最小步数[^4]。 2. **树或图的层次遍历** 对于二叉树或其他类型的图结构,可以通过 BFS 实现按层打印节点的操作。比如给定一棵二叉树,要求返回每一层的所有节点值[^3]。 3. **连通分量计数** 在无向图中统计有多少个独立子集时,通常会采用 BFS 来逐一探索各个连通区域。 ##### 示例代码 以下是基于 Python 的 BFS 实现用于求解从源点到目标点的最短路径: ```python from collections import deque def bfs_shortest_path(graph, start, goal): visited = set() queue = deque([(start, [start])]) while queue: vertex, path = queue.popleft() if vertex not in visited: neighbors = graph[vertex] for neighbor in neighbors: if neighbor == goal: return path + [neighbor] elif neighbor not in visited: queue.append((neighbor, path + [neighbor])) visited.add(vertex) return None ``` --- #### 二、DFS(深度优先搜索) DFS 更适合处理涉及回溯或者需要完全遍历整个空间的情况。 ##### 应用场景 1. **拓扑排序** 使用 DFS 可以方便地完成有向无环图(DAG)上的拓扑排序操作[^5]。 2. **迷宫问题/岛屿数量** 当面对网格状数据并需寻找特定模式(如同色块聚集区)DFS 能够很好地递归进入每一个可能的方向直到边界条件满足为止。 3. **组合枚举与状态压缩动态规划辅助工具** 许多 NP 完全问题如 N皇后放置方案总数等问题都可以通过设计合理的剪枝策略配合 DFS 解决。 ##### 示例代码 下面展示了一个简单的 DFS 函数实现来查找所有可达结点: ```python def dfs_recursive(graph, node, visited=None): if visited is None: visited = set() visited.add(node) print(node, end=' ') for next_node in graph[node]: if next_node not in visited: dfs_recursive(graph, next_node, visited) ``` --- ### 总结对比 | 特性 | BFS | DFS | |--------------|------------------------------|-----------------------------| | 数据结构 | 队列 | 栈 (显式或隐式的函数调用栈) | | 时间复杂度 | O(V+E), V=顶点数,E=边数 | 同样为O(V+E) | | 空间需求 | 较高 | 相对较低 | | 主要用途 | 寻找最短路径 | 探索全部可能性 | 尽管两者各有优劣,但在实际应用过程中往往依据具体任务特点选择合适的方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值