-
模型容量的影响:

泛化误差:
当训练的模型的容量过了最优点时,泛化误差反而升高,这是由于模型过于关注细节导致,模型也同时记住噪声;当拿来一个真的数据时,模型会被一些无关紧要的细节所干扰。 -
希望

过拟合、欠拟合、泛化误差、训练误差
本文探讨了当模型容量超过最优点时,泛化误差会增加的现象,原因是模型过度关注细节并记忆噪声,导致对真实数据预测时易受无关细节影响。
本文探讨了当模型容量超过最优点时,泛化误差会增加的现象,原因是模型过度关注细节并记忆噪声,导致对真实数据预测时易受无关细节影响。
模型容量的影响:

泛化误差:
当训练的模型的容量过了最优点时,泛化误差反而升高,这是由于模型过于关注细节导致,模型也同时记住噪声;当拿来一个真的数据时,模型会被一些无关紧要的细节所干扰。
希望


被折叠的 条评论
为什么被折叠?