computer vision COMPENGN45286528

Overview
This assignment has two tasks in total, is graded out of 20 marks, and is worth 15% of your final mark for this course.
0.1 Objectives
The goal of this assignment is to develop and assess proficiency at mid-level image processing, including corner detection, and deep learning techniques, including domain adaptation for deep neural networks.
0.2 Permitted Python libraries
The Python libraries that you may use in this assignment are
• OpenCV (cv2);
• NumPy;
• Matplotlib;
• scikit-image (skimage);
• scikit-learn (sklearn);
• SciPy;
• Pillow (PIL);
• PyTorch (torch); and
• torchvision.
Use of other Python libraries will result in a score of 0 for the task in which the library was used.
0.3 Advice
1. Before writing your report, we recommend you watch the video “how to write a good lab report” on Wattle. The markers do not want to just see a collection of experimental results, but rather a coherent explanation and interpretation of the results, and key parts of your source code with detailed comments. Note that these are suggestions from a previous version
of the course, not all of which apply to this assignment. In particular, they do not override any requirements in this document.
2. The requirements for submission are at the end of this document. Please ensure your submission meets the requirements.
3. The report is to be uploaded to the Wattle site before the due time. This course does not allow late submissions. That is, any submission after the deadline will receive a mark of 0.
4. This is an individual assignment. All students must work individually when coding and writing the report.
0.4 Academic Integrity
You are expected to comply with the university policy on academic integrity and plagiarism. Please ensure you cite appropriately any resources that you use (lecture notes, papers, online documents, code), and complete all tasks independently. All academic integrity violations will be reported and can result in significant penalties. More importantly, working through the problems yourself will help you learn the material and will set you up for success in the final exam.
1 Task 1: Harris Corner Detection (5 marks)
Read the partially-completed corner detection code in the file “harris.py”, as shown in Figure 1. Then perform the following tasks.
1. Complete the missing sections in “harris.py” or in a Jupyter Notebook after transferring the contents of “harris.py”. Write the necessary functions with appropriate function signatures. (1 mark)
2. Add a comment on line #53 (starting “ g = fspecial( ”), and to every non-empty line of your solution after line #60, to make your code readable.
(0.5 marks)
3. Test this function on the first four provided test images (Harris-{1,2,3,4}.jpg). Display each image with the detected corners overlaid as circles or crosses. (0.5 marks)
Note: Please make sure that your code can be run successfully on a local machine and will generate these results. If your submitted code cannot replicate your results, you will receive a mark of zero.
4. Compare your results with those obtained from using the library function
cv2.cornerHarris for each of the test images. (0.5 marks)
5. Implement an inverse image warping function that takes an image, an (inverted) transforma tion matrix, and the output image size as inputs, and returns the transformed image. (1 mark)
Note: For any inverse projection that does not lie on the original input image pixels, you should use bilinear interpolation to calculate the pixel values.
6. Select one of the four images (Harris-{1,2,3,4}.jpg), and rotate it by 0, 90, 180, and 270 degrees clockwise using your image warping function from the previous part. Then, apply your Harris corner detection algorithm to the resulting images. Record the coordinates of the detected corners, compare them across the rotations, and report your observations and explanations in your report. (0.5 marks)
7. Using Harris-5.jpg and Harris-6.jpg, in addition to the results already obtained, analyse and discuss the factors that affect the performance of Harris corner detection. Visualising the corner response scores may be helpful for this analysis. (1 mark)
In your PDF report, in addition to the text of your report, also include your complete source code with detailed comments (as per part 2) and display your corner detection results and comparisons for each test image.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值