Excel模糊匹配

方法一:

=LOOKUP(1,0/FIND(A1,B2:C5),B2:C5)
—A1,要查找的字符串 ; B2:C5可以是一个单元格

情形一:基于列1的值,在列2中模糊查找,如果有,则返回列2中找到的值

在这里插入图片描述

情形二:基于列1的值,在列2中模糊查找,如果有,则返回列3中找到的值

在这里插入图片描述

方法二:

=VLOOKUP(""&A2&"",B:C,1,0)

情形一:基于列1的值,在列2中模糊查找,如果有,则返回列2中找到的值

在这里插入图片描述

情形二:基于列1的值,在列2中模糊查找,如果有,则返回列3中找到的值

在这里插入图片描述

### 使用 Python 进行 Excel 文件中的模糊匹配 为了在 Python 中实现 Excel 文件的模糊匹配,可以采用 Pandas 库来处理数据,并利用 `fuzzywuzzy` 或其他相似度计算库来进行字符串之间的比较。 #### 准备工作 首先安装必要的包: ```bash pip install pandas fuzzywuzzy openpyxl xlrd ``` 加载并读取 Excel 数据文件[^2]: ```python import pandas as pd # 读取Excel文档 data = pd.read_excel('path_to_your_file.xlsx') ``` #### 处理数据前准备 确保要对比的数据列已经进行了预处理,比如转换成小写形式以减少大小写的干扰[^5]: ```python # 假设我们要对'Address1'这一列做模糊匹配 data['Address1'] = data['Address1'].str.lower() ``` #### 实现模糊匹配功能 使用 `fuzzywuzzy` 来执行模糊匹配。这里展示了一个简单的例子,在两列之间寻找最接近的匹配项[^4]: ```python from fuzzywuzzy import process def find_best_match(query, choices): result = process.extractOne(query, choices) return result if result else None matches = [] for index, row in data.iterrows(): match_result = find_best_match(row['Address1'], list(data['Address2'])) matches.append((row['id1'], row['name1'], match_result[0], match_result[1])) df_matches = pd.DataFrame(matches, columns=['ID from Column1', 'Name from Column1', 'Matched Value from Column2', 'Similarity Score']) print(df_matches) ``` 这段代码遍历每一行记录,并尝试找到第二列表中最像当前地址的最佳匹配;最后创建一个新的 DataFrame 存储这些匹配的结果及其得分情况。 通过上述方法可以在 Python 中有效地完成 Excel 表格内的模糊匹配任务。值得注意的是,实际应用时可能还需要考虑更多细节调整,例如设置最低相似度阈值过滤不理想的配对等。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值