数据结构

数据结构

  • 数据的结构性

对象

  • 用关键字获取

  • 键值对

  • 散状结构,无法获取上下关系

  • key只能是字符串或symbol

  • 没有长度

  • 插入查找速度快

  • 强类型数据,数据不会因为数据被消除而自动被销毁,

    var obj={
                    张三:{数学:12,语文:13,英语:45},
                    李四:{数学:42,语文:33,英语:45},
                    王五:{数学:62,语文:63,英语:85},
                }
                obj["张三"]["语文"]
    

set

  • 存储不重复的数据,
  • 仅仅存储数据,无法通过上下关系直接获取上下的数据,
  • 插入速度快,仅能插入在尾部,
  • 查找速度一般,
  • 属于非顺序性存储,数据不重复

weakset

  • 存储多个同样对象,引用地址不一样的对应
  • 销毁引用对象时,该对象也被销毁
  • 弱引用类型列表

map

  • 有长度

  • 使用key,value类型来完成存储

  • 可以使用地址引用作为key来完成数据的存储

  • 和对象一样,查找,插入速度快,没有上下级关系

  • 尽量使用map减少使用对象作为数据的存储

     var o1={value:2}
               var o= {value:1,next:o1}
    
            //    var obj={a:1,b:2};
            //    obj["a"]=1;
            var div=document.createElement("div");
            var obj={
                [div]:10,
            }  
    

WeakMap

  • 弱引用对象类型,作为key来存储数据
  • 当对象被销毁时,对应的key和value也会被销毁
  • 类似于hashmap

集set WeakSet

  • 不重复

  • 可以放多重集

  • 散列,元素之间没有关系

  • 顺序遍历

  • 插入、删除速度快,遍历查找速度一般,比数组快

    let set=new Set([1,2,3,5,6]);
    let set1=new Set([2,3,4,5]);
    let set2=new Set([set,set1]);
                // 1 2 3 4 5
    

数组

  • 普通数组类型

    • 注意创建时给入长度,数组的内容数据类型相同
    • 尽量向尾部插入,不在前面或中间插入
  • 二维数组类型

    • 多用于二维表格类型数据

      var arr1=["数学","语文","英语"];
                  var arr2=["张三","李四","王五"]
                  arr=[
                      [12,13,45],
                      [42,33,45],
                      [62,63,85],
                  ]
                  var inedx=arr2.indexOf("张三");
                  var i=arr1.indexOf("语文");
                  arr[index][i];
                  index++;
                  arr[index][i];
                  index++;
                  arr[index][i];
      

散列表 map hashmap

  • 查找速度快
  • key是引用地址
  • 有长度size
  • 无法查找上下级关系

  • 二叉树
     class BinaryTreeNode {
            constructor(key, value) {
              // 指向父节点
              this.p = null;
    
              // 左节点
              this.left = null;
    
              // 右节点
              this.right = null;
    
              // 键
              this.key = key;
    
              // 值
              this.value = value;
            }
          }
    
    • 二叉树查找

      class BinaryTree {
              constructor() {
                this.root = null;
              }
      
              static createNode(key, value) {
                return new BinaryTreeNode(key, value);
              }
      
              search(key) {
                let p = this.root;
                if (!p) {
                  return;
                }
      
                while (p && p.key !== key) {
                  if (p.key < key) {
                    p = p.right;
                  } else {
                    p = p.left;
                  }
                }
      
                return p;
              }
      
    • 二叉树插入

      insert(node) {
                // 尾指针的父节点指针
                let p = this.root;
      
                // 尾指针
                let tail = this.root;
      
                while (tail) {
                  p = tail;
                  if (node.key < tail.key) {
                    tail = tail.left;
                  } else {
                    tail = tail.right;
                  }
                }
      
                if (!p) {
                  this.root = node;
                  return;
                }
      
                // 插入
                console.log(p.key,node.key)
                if (p.key < node.key) {
                  p.right = node;
                } else {
                  p.left = node;
                }
      
                node.p = p;
              }
               transverse() {
                return    
                this.__transverse(this.root);
              }
      
              *__transverse(node) {
                if (!node) {
                  return;
                }
                yield*this.__transverse(node.left);
                yield node;
               yield*this.__transverse(node.right);
              }
            }
      
  • 红黑树
    • 1.每个结点要么是红的要么是黑的。(红或黑)
    • 2.根结点是黑的。 (根黑)
    • 3.每个叶结点(叶结点即指树尾端NIL指针或NULL结点)都是黑的。 (叶黑)
    • 4.如果一个结点是红的,那么它的两个儿子都是黑的。 (红子黑)
    • 5.对于任意结点而言,其到叶结点树尾端NIL指针的每条路径都包含相同数目的黑结点。(路径下黑相同)
  • 平衡二叉树
    • 当且仅当任何节点的两棵子树的高度差不大于1的二叉树
  • 二叉查找树
    • 1.若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值;
    • 2.若任意节点的右子树不空,则右子树上所有节点的值均大于它的根节点的值;
    • 3.任意节点的左、右子树也分别为二叉查找树;
    • 4.没有键值相等的节点。
    • 二叉查找树相比于其他数据结构的优势在于查找、插入的时间复杂度较低为 O ( log ⁡ n ) 。二叉查找树是基础性数据结构,用于构建更为抽象的数据结构,如集合、多重集、关联数组等。
  • B+树
    • B+树是B树的一种变形形式,B+树上的叶子结点存储关键字以及相应记录的地址,叶子结点以上各层作为索引使用。能够保持数据稳定有序,其插入与修改拥有较稳定的对数时间复杂度。B+树元素自底向上插入。
      • 每个结点至多有m个子女
      • 除根结点外,每个结点至少有[m/2]个子女,根结点至少有两个子女
      • 有k个子女的结点必有k个关键字。
      • 所有的叶子结点中包含了全部关键字的信息,及指向含有这些关键字记录的指针,且叶子结点本身依关键字的大小自小而大的顺序链接。 (而B 树的叶子节点并没有包括全部需要查找的信息);
  • B树
    • B树是一种平衡的多分树
      • 每个节点最多只有m个子节点。
      • 每个非叶子节点(除了根)具有至少⌈ m/2⌉子节点。
      • 如果根不是叶节点,则根至少有两个子节点。
      • 具有k个子节点的非叶节点包含k -1个键。
      • 所有叶子都出现在同一水平,没有任何信息(高度一致)。
  • 搜索
    • 深度优先搜索DFS
    • 广度优先搜索BFS
  • 遍历
    • 先序遍历:左根右
    • 中序遍历:根左右
    • 后序遍历:左右根

链表

  • 单向链表
  • 双向链表

堆栈

    • 先进后出
    • 先进先出
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值