HDU 1032暴力The 3n + 1 problem

The 3n + 1 problem

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 39762 Accepted Submission(s): 14499

Problem Description
Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.

Consider the following algorithm:

1.      input n

2.      print n

3.      if n = 1 then STOP

4.           if n is odd then n < 3n + 1

5.           else n <n / 2

6.      GOTO 2

Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)

Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.

For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.

Input
The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0.

You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j.

You can assume that no opperation overflows a 32-bit integer.

Output
For each pair of input integers i and j you should output i, j, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).

Sample Input
1 10
100 200
201 210
900 1000

Sample Output
1 10 20
100 200 125
201 210 89
900 1000 174


思路

题目意思是如果计算i-j之间哪个数的循环长度最长,比如n,如果n==1则结束。否则如果n是奇数,n=n*3+1,是偶数则n=n/2,直到n==1为止。n小于1,000,000
注意的是 

 1、输入的这两个数不全是前面的小于后面的。
 2、你为了保证前面的数小于后面的数,可能交换这两个数的值,但是输出的时候要与输入的顺序保持一致。
//这两点说明,必须先输出i,j再判断是否要交换i,j。不这样做的话一直WA吧


代码

用数组
#include <iostream>
#include <stdio.h>
#include <algorithm>
using namespace std;
int a[1000001]={0};
int main()
{
    int i,j;
    while(cin>>i>>j)
    {
        cout<<i<<" "<<j<<" ";//注意和if判断的顺序
        if(i>j)
        {
            int k;
            k=i;
            i=j;
            j=k;
        }
        int f=0;
        for(int y=i;y<=j;y++)
        {
            int count=1;
            int t;
            t=y;
            while(t!=1)
            {
                    if(t%2==0)
                    {
                        t=t/2;
                        count++;
                    }
                    else
                    {
                        t=3*t+1;
                        count++;
                    }
            }
            a[f++]=count;
        }
        sort(a,a+f);
        cout<<a[f-1]<<endl;
    }
    return 0;
}
不用数组
#include <iostream>
using namespace std;
int main()
{
    int i,j;
    while(cin>>i>>j)
    {
        cout<<i<<" "<<j<<" ";
        if(i>j)
        {
            int k;
            k=i;
            i=j;
            j=k;
        }
        int max=0;
        int t;
        int count;
        for(int y=i;y<j+1;y++)
        {
            count=1;
            t=y;
            while(t!=1)
            {
                    if(t%2==0)
                    {
                        t=t/2;
                    }
                    else
                    {
                        t=t*3+1;
                    }
                   count++;
            }
            if(count>max)
            {
                max=count;
            }
        }
        cout<<max<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值