caffe
文章平均质量分 69
十分耕耘一分收获
这个作者很懒,什么都没留下…
展开
-
caffe(1)-mnist数据训练
F0121 20:00:19.648351 3013 convert_mnist_data.cpp:48] Check failed: image_file Unable to open file data/mnist/train-images-idx3-ubyte*** Check failure stack trace: *** @ 0x7f40a0b8edaa (unknown) @ 0x7f40a0b8ece4 (unknown) @ 0x7f原创 2018-01-21 21:07:40 · 726 阅读 · 0 评论 -
Cannot copy param 0 weights from layer 'conv6'; shape mismatch. Source param shape is 21 512 1 1
今天在使用别人的模型训练自己的数据时候,遇到了如下错误:Cannot copy param 0 weights from layer 'conv6'; shape mismatch. Source param shape is 21 512 1 1 (10752); target param shape is 5 512 1 1 (2560). To learn this layer's p...原创 2018-10-12 11:05:14 · 1133 阅读 · 1 评论 -
Check failed: error == cudaSuccess (30 vs. 0) unknown error *** Check failure stack trace: ***
Check failed: error == cudaSuccess (30 vs. 0) unknown error*** Check failure stack trace: *** @ 0x7fecadac1daa (unknown) @ 0x7fecadac1ce4 (unknown) @ 0x7fecadac16e6 (unkno...原创 2018-10-09 11:39:47 · 1327 阅读 · 0 评论 -
build_release/tools/caffe: error while loading shared libraries: libhdf5_hl.so.100: cannot open
build_release/tools/caffe: error while loading shared libraries: libhdf5_hl.so.100: cannot open shared object file: No such file or directory Makefile:534: recipe for target 'runtest' failed解决方法:没有...转载 2018-11-06 10:15:15 · 1947 阅读 · 0 评论 -
错误:No module named scipy.io
输入 conda install scipy即可解决原创 2018-11-09 10:02:34 · 7025 阅读 · 1 评论 -
linux:无法挂在u盘
Error mounting /dev/sdc1 at /media/b2403/wqq1: Command-line `mount -t "ntfs" -osudo ntfsfix /dev/sdc1原创 2018-11-10 11:03:06 · 566 阅读 · 0 评论 -
Anaconda实现python2与python3版本切换
如果你已经安装了Anaconda Python3.6版,想要再安装Python2.7环境,在命令行中输入:conda create -n python27 python=2.7source activate python27想要退出python2.7进入python3.6,需要再次键入命令deactivate(linux和mac下用source deactivate命令)。...转载 2018-11-08 17:51:44 · 706 阅读 · 0 评论 -
Error parsing text-format caffe.NetParameter:1220:19: String literals cannot cross line boundaries.
遇到如下错误:[libprotobuf ERROR google/protobuf/text_format.cc:245] Error parsing text-format caffe.NetParameter: 1220:19: String literals cannot cross line boundaries.F1114 09:45:26.187687 15078 upgrade...原创 2018-11-14 09:57:13 · 1467 阅读 · 0 评论 -
FCN训练自己的数据遇到的问题总结
配置个FCN遇到了无数的坑,真的是醉了,特意记录下来,希望对大家有些帮助,少走弯路。1.运行solve.py时,出现一下错误:Traceback (most recent call last): File "solve.py", line 26, in <module> solver = caffe.SGDSolver('solver.prototxt') Fi...2018-07-16 22:11:29 · 1193 阅读 · 5 评论 -
caffe提取特征
转载地址:https://blog.csdn.net/feelingjun/article/details/70132815caffe提供的使用工具build/tools/extract_features.bin实现了特征提取功能,该程序需要一个训练好的网络和一个数据输入层,运行后可得到相应数据通过网络某个中间层产生的特征图并保存到磁盘。用法如下:$ extract_features \ //可...转载 2018-04-19 10:24:55 · 494 阅读 · 0 评论 -
caffe:训练自己的图片
1.建立好自己的文件夹如图所示,总文件夹中包括train和test两个文件夹,train和test文件夹下又包含两个文件夹,cat和dog文件夹,如图所示输入ls train/cat/ | sed "s:^:cat/:" |sed "s:$: 0:" >>train.txt,将cat的图片信息就会输入到TXT文件中,会看到生成的train.txt然后输入ls train/dog/ | ...原创 2018-01-24 22:55:29 · 507 阅读 · 0 评论 -
caffe:使用训练好的模型进行训练(使用mnist模型)
在使用模型的时候,不能直接调用该模型,还需要改写之前的训练网络,最后将更改之后的网络(deploy)和模型结合在一起使用1.把数据层(Data Layer)和连接数据层的Layers去掉(即top:data的层),图左彩色部分删除2. 去掉输出层和连接输出层的Layers(即bottom:label)图右彩色部分删除 3. 重新建立输入,将第一步删除的部分粘贴下面的代码in...原创 2018-01-26 21:59:46 · 3126 阅读 · 2 评论 -
caffe中五种层的实现与参数配置(1)------卷积层
卷积层的作用主要是把一些特征做强化,使特征的位置更突出1.框架理解输入一个图像A的大小是4*4,经过2*2的卷积B,且步长为1,得到一个(4-2+1)×(4-2+1)=3*3的mapC每个map是不同卷积核在前一层每个map上进行卷积,并将每个对应位置上的值相加然后再加上一个偏置项。2.参数理解layer { name: "conv2" #该层的名字 type: "C...原创 2018-01-27 18:28:24 · 2328 阅读 · 0 评论 -
caffe中五种层的实现与参数配置(2)------池化层和全连接层
池化层的目的主要是为了降低维度1.池化层 结构框架1.1max-pooling(最大池化层)图中输入为卷积层1的输出,大小为4*24,对每个不重叠的2*2的区域进行降采样,步长为2。对于max-pooling,选出每个区域中的最大值作为输出,例如,左上的(1,1,2,3)最大的是3,右上是3,左下是3,右下是2。而对于mean-pooling,需计算每个区域的平原创 2018-01-27 20:15:36 · 2587 阅读 · 0 评论 -
caffe中五种层的实现与参数配置(3)------激活函数层
1.激活函数作用:激活函数是用来引入非线性因素的。2.激活函数一般具有以下性质: (1)非线性 (2)处处可导:反向传播时需要计算激活函数的偏导数,所以要求激活函数除个别点外,处处可导。 (3)单调性:当激活函数是单调的时候,单层网络能够保证是凸函数。 (4)输出值的范围: 当激活函数输出值是有限的时候,基于梯度的优化方法会更加稳定,因为特征的表原创 2018-01-27 20:29:09 · 389 阅读 · 0 评论 -
cnn常用参数记录
转载地址:http://www.cnblogs.com/lutingting/p/5252589.html1. epoch在代码中经常见到n_epochs这个参数,该参数到底是什么意思呢?答案如下:在一个epoch中,所有训练集数据使用一次one epoch = one forward pass and one backward pass of all the training转载 2018-01-27 20:43:18 · 770 阅读 · 0 评论 -
caffe绘制训练过程的loss和accuracy曲线(以mnist为例)
1.首先建立一个文件plot_loss,然后将以下三个文件放在该文件夹下1.caffe/tools/extra/parse_log.sh 2 caffe/tools/extra/extract_seconds.py3 caffe/tools/extra/plot_training_log.py.example2.切换到caffe,打开终端命令,输入 sh examples/mni原创 2018-01-27 21:25:35 · 726 阅读 · 0 评论 -
caffe中五种层的实现与参数配置(4)------softmax层
Softmax回归模型是logistic回归模型在多分类问题上的推广,在多分类问题中,待分类的类别数量大于2,且类别之间互斥。Softmax公式:通常情况下softmax会被用在网络中的最后一层,用来进行最后的分类和归一化。通常有2种结构:第一种#可以计算给出每个样本对应的损失函数值layer { name: "loss" type: "SoftmaxWi原创 2018-01-27 20:40:51 · 979 阅读 · 0 评论 -
caffe图像分类时,训练的模型准确率很高,而单张图片测试时准确率很低
做了好长的时间的图像分类,用caffe训练的模型正确率很高,但是用单张图片进行测试识别时,效果特别差,检测的出来的几乎都是同一类,查了一些资料,终于找到了解决办法。原因1:如果训练用了GPU,那么测试的时候也要注意用GPU原因2:注意测试图片的读取格式。我就是错在了这里,参考的博客https://blog.csdn.net/u013841196/article/details/7279...原创 2019-04-30 10:19:11 · 3581 阅读 · 8 评论