升幂引理——详解

内容

升幂(Lift the Exponent,LTE)引理是初等数论中比较常用的一个定理。

定义  为整数  的标准分解中素因子  的幂次,即  满足  且 .

由于升幂引理内容较长,我们将其分为三部分介绍:

以下内容设  为素数, 为满足  且  的整数, 为正整数。

第一部分

对所有的素数  和满足  的整数 

  1. 若 ,则:

  2. 若 ,则对奇数  有:

证明

若 ,则不难发现 ,则显然有:

进而由  可知命题得证。

对  的情况证明方法类似。

第二部分

若  是奇素数,

  1. 若 ,则:

  2. 若 ,则对奇数  有:

证明

若 ,令 ,我们只需证明  的情况。

  • 若 ,则由二项式定理:

    从而

  • 若 ,则由数学归纳法可得

因此命题得证。

对  的情况证明方法类似。

第三部分

若  且 

  1. 对奇数  有(与第一部分的 1 相同):

  2. 对偶数  有:

另外对上述的 ,我们有:

若 ,则:

证明

我们只需证明  为偶数的情况。由于此时 ,故我们不能用第二部分的方法证明。

令 ,其中 ,从而

注意到 ,从而 ,进而上式可变为:

因此命题得证。

参考资料

  1. Lifting-the-exponent lemma - Wikipedia
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值