特征子空间
矩阵 的属于 的全部特征向量,再添上零向量,构成一个线性空间,称为矩阵 的一个特征子空间,记为 。它是齐次线性方程组:
的解空间。
对于特征子空间 ,由亏加秩定理有:
因此,特征子空间 的维数为:
也称为 的 几何重数。
不变子空间
在研究线性变换 的时候,常常希望选取空间 的一个基,使得线性变换 对于这个基的矩阵具有尽可能简单的形状。
设 是数域 上的线性空间, 是 的一个子空间, 是 上的一个线性变换。如果对于 中任意的向量 ,都有 也在 中(也称为空间在变换下不变或稳定),称 是 的一个不变子空间。
空间在变换下不变,并不是说坐标在变换下真的「不变」,有可能是进行了一个拉伸等变形,只是变形后还落在空间里。
- 线性空间 的任意一个子空间都是数乘变换的不变子空间。
- 对于 中任意的线性变换 ,空间 和零子空间都是 的不变子空间,称为平凡不变子空间。
- 不变子空间的交与和也是不变子空间。
设 是线性变换 的一个不变子空间。只考虑 在不变子空间 上的作用,就得到子空间 本身的线性变换,称为 在子空间 上的限制,记作 。
对于 中任意的线性变换 ,像空间 与核空间 是 的不变子空间。这两种情况的含义是,空间 在变换前后,完成了自身的压缩(像空间),或者压缩到 (核空间)。
对于 中任意的线性变换 , 的特征子空间是 的不变子空间。
准素分解
根据代数基本定理,最小多项式可以分解为:
考虑最小多项式代入变元 为矩阵 后,各个因式的核空间,构成矩阵 的一系列不变子空间:
定理:该不变子空间 的维数,恰好为特征值 的代数重数。
回顾一下,代数重数是指特征多项式各个因式的次数,几何重数是指特征子空间 的维数。这个不变子空间 与特征子空间 ,两者都是矩阵的核空间,并且两个矩阵构成最小多项式 次幂的关系。也就是说,特征子空间的维数是几何重数,「特征子空间」经过最小多项式 次幂后到达一个「不变子空间」,不变子空间的维数到达了特征多项式的代数重数。
该定理其实是下面准素分解定理的推论。
记矩阵 对应的线性变换 ,在每个子空间 上的限制 。于是 的最小多项式是 。
定理:设 是域 上的线性空间, 是 上的一个线性变换。那么空间 可以关于线性变换 进行准素分解,拆成若干不变子空间 的直和。
这意味着, 在某组基下的矩阵是准对角阵:
其中, 是 在对应基下的矩阵。
该定理表明,可以使用不变子空间简化线性变换的矩阵。
可对角化矩阵
对于 阶方阵 ,如果相似于一个对角阵,则称 为可对角化矩阵,或称单纯矩阵。
- 对角阵的和、积、逆,如果存在,仍然是对角阵,其对角线上的元素就是它的特征值。
- 线性变换 的矩阵为可对角化矩阵,等价于 在某组基下的矩阵为对角阵。
定理:设矩阵 的全部互异特征根为 ,则以下命题等价:
- 矩阵 可对角化。
- 矩阵 有 个线性无关的特征向量。
- 以下公式成立:
前文已经指出,特征多项式的分解式中特征值的次数称为代数重数,特征子空间的维数称为几何重数。这个定理也表明,矩阵 可对角化,等价于 的每个特征值 的代数重数都等于它的几何重数。
推论:如果 阶方阵 恰有 个互异特征值,则它必可对角化。反之则不一定。
定理:矩阵 可对角化当且仅当 的最小多项式没有重根。
矩阵的相似也会保持特征向量之间的线性相关关系不变。
特征向量完全可能不是实数,也完全可能找不到 个线性无关的特征向量。
对于重特征值而言,特征向量张成空间。为了描述这个空间,需要从其中选择代表。一般会选择线性无关的代表,代表的个数就是空间的维数。
选取代表时,常常将它们正交化与单位化。最终得到的就是一套单位正交的代表。
特征向量不一定正交,不同特征值的特征向量,可能无法正交。因此正交化只能对于重特征值的特征向量进行。但是单位化可以对任意特征向量进行。
幂零矩阵
设 是空间 的一个线性变换。如果存在一个正整数 ,使得 为零变换,称 是空间 的一个幂零变换。
对于某一个正整数 ,满足条件 的矩阵称为幂零矩阵。
一般可以进一步假定 是使 为零变换的最小正整数,于是 的最小多项式是 。于是存在一个向量 ,使得:
循环子空间
定理:设 是空间 的一个线性变换, 是空间 的一个向量。如果存在一个正整数 ,使得:
那么向量 线性无关。
由这个定理可以给出一个定义:
设 是空间 的一个线性变换, 是 的一个子空间。如果存在一个向量 和一个正整数 ,使得:
- 向量 构成 的一个基。
-
如下等式成立:
那么子空间 称为关于 的一个循环子空间,简称 循环子空间。此时 称为循环子空间 的一个生成向量,向量 称为 的一个循环基。
显然,一个 循环子空间 在 作用下不变,并且对于循环子空间 中的任意向量 ,均有 ,这里 为循环子空间的维数。
幂零 Jordan 块
如果空间 是变换 的循环子空间,那么 在 上的限制 是 的一个幂零变换,并且 关于 的倒序排列的循环基 的矩阵是如下形状的 阶上三角矩阵:
矩阵 称为一个 阶幂零 Jordan 矩阵,或者 阶幂零 Jordan 块。
设 是 维空间 的一个幂零变换,把出现在 关于 的循环子空间的分解中,唯一确定的一组正整数 叫做 的不变指数。
对于 阶幂零矩阵 , 与一个上述形状的矩阵 相似,也唯一确定一个正整数序列 ,称为矩阵 的不变指数。
幂零阵虽然不能和对角阵相似,但是可以相似于这样的标准形式。在 Jordan 标准型,将相似对角化与幂零阵的标准形式,二者结合起来,给出一般的矩阵通过相似变换可以达到的标准形式。
一些定理
-
设 是空间 的一个幂零变换,而
是一个多项式,那么当且仅当 时,线性变换 有逆变换。当 可逆时, 的逆变换也是 的一个多项式。
-
设 是空间 的一个幂零变换, 是一个 维 循环子空间, 是 中的向量。如果存在一个整数 ,使得
那么存在 中的向量 ,使得
-
设 是 维空间 的一个幂零变换, 是 的最小多项式,令 是一个 维 循环子空间,那么存在 的一个余子空间 ,使得:
并且 也在 作用下不变。
-
设 是 维空间 的一个幂零变换,那么 可以分解为 循环子空间的直和:
-
每一个 阶幂零矩阵都与一个形如:
的矩阵相似,这里的每一个 是一个 阶幂零 Jordan 块。
-
如果规定 循环子空间 按照维数 降序排列 ,那么将 分解为 循环子空间的方法是由 唯一确定的。