对角化——详解

特征子空间

矩阵  的属于  的全部特征向量,再添上零向量,构成一个线性空间,称为矩阵  的一个特征子空间,记为 。它是齐次线性方程组:

的解空间。

对于特征子空间 ,由亏加秩定理有:

因此,特征子空间  的维数为:

也称为  的 几何重数

不变子空间

在研究线性变换  的时候,常常希望选取空间  的一个基,使得线性变换  对于这个基的矩阵具有尽可能简单的形状。

设  是数域  上的线性空间, 是  的一个子空间, 是  上的一个线性变换。如果对于  中任意的向量 ,都有  也在  中(也称为空间在变换下不变或稳定),称  是  的一个不变子空间。

空间在变换下不变,并不是说坐标在变换下真的「不变」,有可能是进行了一个拉伸等变形,只是变形后还落在空间里。

  • 线性空间  的任意一个子空间都是数乘变换的不变子空间。
  • 对于  中任意的线性变换 ,空间  和零子空间都是  的不变子空间,称为平凡不变子空间。
  • 不变子空间的交与和也是不变子空间。

设  是线性变换  的一个不变子空间。只考虑  在不变子空间  上的作用,就得到子空间  本身的线性变换,称为  在子空间  上的限制,记作 。

对于  中任意的线性变换 ,像空间  与核空间  是  的不变子空间。这两种情况的含义是,空间  在变换前后,完成了自身的压缩(像空间),或者压缩到 (核空间)。

对于  中任意的线性变换 , 的特征子空间是  的不变子空间。

准素分解

根据代数基本定理,最小多项式可以分解为:

考虑最小多项式代入变元  为矩阵  后,各个因式的核空间,构成矩阵  的一系列不变子空间:

定理:该不变子空间  的维数,恰好为特征值  的代数重数。

回顾一下,代数重数是指特征多项式各个因式的次数,几何重数是指特征子空间  的维数。这个不变子空间  与特征子空间 ,两者都是矩阵的核空间,并且两个矩阵构成最小多项式  次幂的关系。也就是说,特征子空间的维数是几何重数,「特征子空间」经过最小多项式  次幂后到达一个「不变子空间」,不变子空间的维数到达了特征多项式的代数重数。

该定理其实是下面准素分解定理的推论。

记矩阵  对应的线性变换 ,在每个子空间  上的限制 。于是  的最小多项式是 。

定理:设  是域  上的线性空间, 是  上的一个线性变换。那么空间  可以关于线性变换  进行准素分解,拆成若干不变子空间  的直和。

这意味着, 在某组基下的矩阵是准对角阵:

其中, 是  在对应基下的矩阵。

该定理表明,可以使用不变子空间简化线性变换的矩阵。

可对角化矩阵

对于  阶方阵 ,如果相似于一个对角阵,则称  为可对角化矩阵,或称单纯矩阵。

  • 对角阵的和、积、逆,如果存在,仍然是对角阵,其对角线上的元素就是它的特征值。
  • 线性变换  的矩阵为可对角化矩阵,等价于  在某组基下的矩阵为对角阵。

定理:设矩阵  的全部互异特征根为 ,则以下命题等价:

  • 矩阵  可对角化。
  • 矩阵  有  个线性无关的特征向量。
  • 以下公式成立:

前文已经指出,特征多项式的分解式中特征值的次数称为代数重数,特征子空间的维数称为几何重数。这个定理也表明,矩阵  可对角化,等价于  的每个特征值  的代数重数都等于它的几何重数。

推论:如果  阶方阵  恰有  个互异特征值,则它必可对角化。反之则不一定。

定理:矩阵  可对角化当且仅当  的最小多项式没有重根。

矩阵的相似也会保持特征向量之间的线性相关关系不变。

特征向量完全可能不是实数,也完全可能找不到  个线性无关的特征向量。

对于重特征值而言,特征向量张成空间。为了描述这个空间,需要从其中选择代表。一般会选择线性无关的代表,代表的个数就是空间的维数。

选取代表时,常常将它们正交化与单位化。最终得到的就是一套单位正交的代表。

特征向量不一定正交,不同特征值的特征向量,可能无法正交。因此正交化只能对于重特征值的特征向量进行。但是单位化可以对任意特征向量进行。

幂零矩阵

设  是空间  的一个线性变换。如果存在一个正整数 ,使得  为零变换,称  是空间  的一个幂零变换。

对于某一个正整数 ,满足条件  的矩阵称为幂零矩阵。

一般可以进一步假定  是使  为零变换的最小正整数,于是  的最小多项式是 。于是存在一个向量 ,使得:

循环子空间

定理:设  是空间  的一个线性变换, 是空间  的一个向量。如果存在一个正整数 ,使得:

那么向量  线性无关。

由这个定理可以给出一个定义:

设  是空间  的一个线性变换, 是  的一个子空间。如果存在一个向量  和一个正整数 ,使得:

  • 向量  构成  的一个基。
  • 如下等式成立:

那么子空间  称为关于  的一个循环子空间,简称  循环子空间。此时  称为循环子空间  的一个生成向量,向量  称为  的一个循环基。

显然,一个  循环子空间  在  作用下不变,并且对于循环子空间  中的任意向量 ,均有 ,这里  为循环子空间的维数。

幂零 Jordan 块

如果空间  是变换  的循环子空间,那么  在  上的限制  是  的一个幂零变换,并且  关于  的倒序排列的循环基  的矩阵是如下形状的  阶上三角矩阵:

矩阵  称为一个  阶幂零 Jordan 矩阵,或者  阶幂零 Jordan 块。

设  是  维空间  的一个幂零变换,把出现在  关于  的循环子空间的分解中,唯一确定的一组正整数  叫做  的不变指数。

对于  阶幂零矩阵 , 与一个上述形状的矩阵  相似,也唯一确定一个正整数序列 ,称为矩阵  的不变指数。

幂零阵虽然不能和对角阵相似,但是可以相似于这样的标准形式。在 Jordan 标准型,将相似对角化与幂零阵的标准形式,二者结合起来,给出一般的矩阵通过相似变换可以达到的标准形式。

一些定理

  1. 设  是空间  的一个幂零变换,而

    是一个多项式,那么当且仅当  时,线性变换  有逆变换。当  可逆时, 的逆变换也是  的一个多项式。

  2. 设  是空间  的一个幂零变换, 是一个  维  循环子空间, 是  中的向量。如果存在一个整数 ,使得

    那么存在  中的向量 ,使得

  3. 设  是  维空间  的一个幂零变换, 是  的最小多项式,令  是一个  维  循环子空间,那么存在  的一个余子空间 ,使得:

    并且  也在  作用下不变。

  4. 设  是  维空间  的一个幂零变换,那么  可以分解为  循环子空间的直和:

  5. 每一个  阶幂零矩阵都与一个形如:

    的矩阵相似,这里的每一个  是一个  阶幂零 Jordan 块。

  6. 如果规定  循环子空间  按照维数  降序排列 ,那么将  分解为  循环子空间的方法是由  唯一确定的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值