- 博客(7)
- 收藏
- 关注
原创 机器学习常见算法概述——集成学习总结
集成学习:多个弱分类器组合成一个强分类器。1.Adaboost:通过改变训练样本的权重(初始时权重相同,每次将前一个分类器分类错误的那些样本的权重增加,表现在分类误差率的计算上),反复训练多个弱分类器,最后根据这些弱分类器的分类误差率(权重)将他们线性组合到一起。其中分类误差率越大权重越小。等价于损失函数为指数损失时的前向分布算法。优点:2.Bagging:重复有放回的从训练样本中...
2018-08-31 00:04:51 362
原创 数据结构与算法2——时间复杂度和空间复杂度
算法效率的度量方法:事后统计的方法、事前分析估算方法。算法的时间复杂度:在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度记作:T(n)=O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的 增长率 相同,称作算法的渐进时间复杂度,简称为时间复杂度。随着输入规模n的增大,T(n)增长最慢的算...
2018-03-17 22:34:26 240
原创 数据结构与算法1——绪论
一、数据结构:包括 逻辑结构 和 物理结构(逻辑结构在计算机中的存储形式)。四大逻辑结构:1.集合结构 2.线性结构(一对一)3.树形结构(一对多)4.图形结构(多对多)。物理结构 数据元素的存储机构形式: 1.顺序存储:把数据元素存放在地址连续的存储单元里,其逻辑关系与物理关系是一致的,例如数组; 2.链式存储:比顺序存储结构更灵活,把数据元素存储在任意的存储单元里,这些存储单元可...
2018-03-17 21:36:37 228
原创 机器学习常见算法概述——KNN(K近邻法)
特点:(1)分类、回归 (2)判别模型 (3)有监督 思想:K近邻法不具有显式的学习过程,训练数据的类别已知,当我们需要判断新的样本x属于哪一个类别时,在训练集中根据距离度量找出距离x最近的K个样本,用投票法对x的类别进行判断。模型:利用训练数据集对特征空间进行划分,并将其作为分类的“模型”。策略:多数表决规则等价于经验...
2018-03-17 11:18:12 404
原创 BeautifulSoup中find(),find_all(),select()函数
find()函数:输出第一个可匹配对象,即find_all()[0]. find_all()函数:(以下来自官方文档)
2017-07-25 18:40:02 21147 3
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人