1.题目
给定一个非负整数 numRows
,生成「杨辉三角」的前 numRows
行。
在「杨辉三角」中,每个数是它左上方和右上方的数的和。
示例 1:
输入: numRows = 5 输出: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]
示例 2:
输入: numRows = 1 输出: [[1]]
2. 解题思路
杨辉三角,是二项式系数在三角形中的一种几何排列。它是中国古代数学的杰出研究成果之一,它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的结合。
杨辉三角有许多有趣的性质,下面是其中一些:
- 每个元素是它上面两个元素的和。
- 第 n 行的第一个和最后一个元素都是 1。
- 每个元素都是它上面的两个元素的和,因此每个元素都是一个对应二项式系数的值。
- 对角线上的元素都是幂数,例如第一行的元素都是 1,第二行的元素都是 1,第三行的元素是 1 1 1,第四行的元素是 1 2 3 1,...
- 对称性:每个元素与它对称位置的元素相等。
- 每行的和是 2^n,其中 n 是行数。
- 每个元素都可以表示为 (n-k)! / (k! \* (n-2k)!),其中 n 是行数,k 是列数。
- 可以用矩阵乘法快速计算任意行的值。
- 可以用递推关系计算任意元素的值。
杨辉三角示例
1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1
每一行的第一个和最后一个数字都是1,而中间的数字则是上一行中相邻两个数字的和。例如,第10行的36是第9行的1和35的和,第10行的84是第9行的35和56的和。
代码思路
内存分配:首先为二维数组的第一维(行指针数组)分配内存,然后为列数数组分配内存。
初始化行和列数:通过循环遍历每一行,为每行分配内存,并设置每行的列数。
填充杨辉三角:
- 对于每行的第一个元素,直接设置为1。
- 对于每行的中间元素,其值为上一行对应位置的前一列和当前列的元素之和。
- 对于每行的最后一个元素,直接设置为1。
返回结果:函数返回指向已生成杨辉三角的二维数组的指针,并通过参数
returnSize
和returnColumnSizes
返回数组的大小和每行的列数。注意数组的内存分配。
// 函数定义,接受行数numRows,以及两个指针参数用于返回结果的大小和列数
int** generate(int numRows, int* returnSize, int** returnColumnSizes) {
// 分配内存给二维数组的第一维,即行指针数组
int** ret = malloc(sizeof(int*) * numRows);
// 设置返回的大小为numRows
*returnSize = numRows;
// 分配内存给列数数组,用于存储每行的列数
*returnColumnSizes = malloc(sizeof(int) * numRows);
int i = 0; // 行索引
int j = 0; // 列索引
// 遍历每一行
for(i = 0; i < numRows; i++) {
// 为当前行分配内存,每行的元素数量等于行号加1
ret[i] = malloc(sizeof(int) * (i + 1));
// 设置当前行的列数
(*returnColumnSizes)[i] = i + 1;
// 遍历当前行的每个元素
for(j = 0; j <= i; j++) {
// 如果是第一列,设置为1
if(j == 0) {
ret[i][0] = 1;
}
// 如果是中间列,计算值为上一行对应两元素之和
else if((0 < j) && (j < i)) {
ret[i][j] = ret[i - 1][j - 1] + ret[i - 1][j];
}
// 如果是最后一列,设置为1
else {
ret[i][j] = 1;
}
}
}
// 返回生成的二维数组
return ret;
}