各种筛

线性筛求质数

#include <cstring>
using namespace std;
int prime[1100000],primesize,phi[11000000];
bool isprime[11000000];
void getlist(int listsize)
{
    memset(isprime,1,sizeof(isprime));
    isprime[1]=false;
    for(int i=2;i<=listsize;i++)
    {
        if(isprime[i])prime[++primesize]=i;
         for(int j=1;j<=primesize&&i*prime[j]<=listsize;j++)
         {
            isprime[i*prime[j]]=false;
            if(i%prime[j]==0)break;
        }
    }
}

求欧拉函数

void getlist(int listsize)
{
    memset(isprime,1,sizeof(isprime));
    isprime[1]=false;
    for(int i=2;i<=listsize;i++)
    {
        if(isprime[i])
        {
             prime[++primesize]=i;
             phi[i]=i-1;
         }
         for(int j=1;j<=primesize&&i*prime[j]<=listsize;j++)
         {
            isprime[i*prime[j]]=false;
            if(i%prime[j]==0)
             {
                phi[i*prime[j]]=phi[i]*prime[j];
                break;
            }
            phi[i*prime[j]]=phi[i]*(prime[j]-1);
        }
    }
}

求莫比乌斯函数

mu[1]=1;
    for (int i=2;i<=size;i++)
    {
        if (!mark[i])pri[++tot]=i,mu[i]=-1;
        for (int j=1;j<=tot&&i*pri[j]<=size;j++)
        {
            mark[i*pri[j]]=1;
            if (i%pri[j]==0){mu[i*pri[j]]=0;break;}
            else mu[i*pri[j]]-=mu[i];
        }
    }

求因子个数

void getphi()//facnum表示因子个数,d表示最小因子幂次,因为每次都被最小的质因子筛掉
{
    facnum[1]=1;
    for (int i=2;i<=5000000;i++)
    {
        if (!flag[i]) p[++tot]=i,facnum[i]=2,d[i]=1;
        for (int j=1;j<=tot&&i*p[j]<=5000000;j++)
        {
            flag[i*p[j]]=1;
            if (i%p[j]==0)
            {
                facnum[i*p[j]]=facnum[i]/(d[i]+1)*(d[i]+2);
                d[i*p[j]]=d[i]+1;
                break;
            }
            facnum[i*p[j]]=facnum[i]*facnum[p[j]];
            d[i*p[j]]=1;
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值