【bzoj2301】[HAOI2011]Problem b

Description

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

Sample Input

2
2 5 1 5 1
1 5 1 5 2

Sample Output

14
3

HINT

100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

题解
同bzoj1101,容斥原理即可。

代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#define N 10001
#define M 1000001
using namespace std;
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
int tot;
int mu[50005],sum[50005],pri[50005];
bool mark[50005];
void get()
{
    mu[1]=1;
    for (int i=2;i<=50000;i++)
    {
        if (!mark[i])pri[++tot]=i,mu[i]=-1;
        for (int j=1;j<=tot&&i*pri[j]<=50000;j++)
        {
            mark[i*pri[j]]=1;
            if (i%pri[j]==0){mu[i*pri[j]]=0;break;}
            else mu[i*pri[j]]-=mu[i];
        }
    }
    for (int i=1;i<=50000;i++)
    {
        sum[i]=sum[i-1]+mu[i];
    }
}
int cal(int n,int m)
{
    if (n>m) swap(n,m);
    int ans=0,pos;
    for (int i=1;i<=n;i=pos+1)
    {
        pos=min(n/(n/i),m/(m/i));
        ans+=(sum[pos]-sum[i-1])*(n/i)*(m/i);
    }
    return ans;
}
int main()
{
    get();
    int n=read();
    while (n--)
    {
        int a=read(),b=read(),c=read(),d=read(),k=read();
        a--,c--;
        a/=k;b/=k;c/=k;d/=k;
        int ans=cal(a,c)+cal(b,d)-cal(a,d)-cal(b,c);
        printf("%d\n",ans);
    }
    return 0;
}
发布了476 篇原创文章 · 获赞 33 · 访问量 11万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览