题目描述
味味最近对树很感兴趣,什么是树呢?树就是有n个节点和n-1条边形成的无环连通无向图。
味味在研究过程中想知道,对于一个无根树,当节点i作为根的时候树的高是多少。所谓树高指的是从根节点出发,到离根节点最远叶子节点所经过的节点的总数,详见输入输出样例1。味味现在遇到了一些烦心的事情,不想再继续思考了,请你帮助她解决这个问题。
输入
共N行。
第1行为一个正整数N,表示树的节点个数。
第2行到第N行里,每行两个用空格隔开的正整数a和b,表示a与b有连边。
输出
共N行,第i行表示以节点i为根时的树高。
样例输入
4
1 4
2 4
3 4
样例输出
3
3
3
2
提示
对于 100%的数据有 1≤N≤500000,1≤a,b≤N。
题解
树上dp,转移根,记录往上走的最大深度。
代码
#include<bits/stdc++.h>
#define N 500005
using namespace std;
inline int read()
{
int x=0;char ch=getchar();
while (ch<'0'||ch>'9') ch=getchar();
while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x;
}
int tot,n,ans[N],ret[N*2],Next[N*2],Head[N];
int dep[N],fa[N];
int ins(int u,int v)
{
tot++;ret[tot]=v;Next[tot]=Head[u];Head[u]=tot;
}
void dfs1(int u)
{
dep[u]=1;
for (int i=Head[u];i;i=Next[i])
{
int v=ret[i];
if (fa[u]!=v)
{
fa[v]=u;
dfs1(v);
dep[u]=max(dep[v]+1,dep[u]);
}
}
}
void dfs2(int u,int d)
{
ans[u]=d+1;int max1=0,max2=0,to1=0,to2=0;
for (int i=Head[u];i;i=Next[i])
{
int v=ret[i];
if (fa[u]!=v)
{
ans[u]=max(ans[u],dep[v]+1);
if (dep[v]>max1)
{
max2=max1;to2=to1;
max1=dep[v];to1=v;
}
else if (dep[v]>max2) max2=dep[v],to2=v;
}
}
for (int i=Head[u];i;i=Next[i])
{
int v=ret[i];
if (fa[u]!=v)
{
if (to1!=v) dfs2(v,max(d+1,max1+1));
else dfs2(v,max(d+1,max2+1));
}
}
}
int main()
{
n=read();
for (int i=1;i<n;i++)
{
int u=read(),v=read();
ins(u,v);ins(v,u);
}
dfs1(1);
dfs2(1,0);
for (int i=1;i<=n;i++)
printf("%d\n",ans[i]);
return 0;
}