Description
小R和B神正在玩一款游戏。这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点,且地图是连通的
。换句话说,游戏的地图是一棵有N个节点的树。游戏中有一种道具叫做侦查守卫,当一名玩家在一个点上放置侦
查守卫后,它可以监视这个点以及与这个点的距离在D以内的所有点。这里两个点之间的距离定义为它们在树上的
距离,也就是两个点之间唯一的简单路径上所经过边的条数。在一个点上放置侦查守卫需要付出一定的代价,在不
同点放置守卫的代价可能不同。现在小R知道了所有B神可能会出现的位置,请你计算监视所有这些位置的最小代价
。
Input
第一行包含两个正整数N和D,分别表示地图上的点数和侦查守卫的视野范围。约定地图上的点用1到N的整数编号。
第二行N个正整数,第i个正整数表示在编号为i的点放置侦查守卫的代价Wi。保证Wi≤1000。第三行一个正整数M,
表示B神可能出现的点的数量。保证M≤N。第四行M个正整数,分别表示每个B神可能出现的点的编号,从小到大不
重复地给出。接下来N–1行,每行包含两个正整数U,V,表示在编号为U的点和编号为V的点之间有一条无向边。N<=
500000,D<=20
Output
仅一行一个整数,表示监视所有B神可能出现的点所需要的最小代价
Sample Input
12 2
8 9 12 6 1 1 5 1 4 8 10 6
10
1 2 3 5 6 7 8 9 10 11
1 3
2 3
3 4
4 5
4 6
4 7
7 8
8 9
9 10
10 11
11 12
Sample Output
10
题解
f[i][j]:以i为根的子树中,至少前j层已经被全部覆盖,做完i这一整棵子树的最小代价。
g[i][j]:i节点向上至少 j层被覆盖,做完i的子树的最小代价。
代码
#include<bits/stdc++.h>
#define N 500005
#define inf 1<<29
using namespace std;
inline int read()
{
int x=0;char ch=getchar();
while (ch<'0'||ch>'9') ch=getchar();
while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x;
}
int tot=0,n,m,d,w[N],g[N][21],f[N][21],Head[N];
int ret[2*N],Next[2*N],flag[N];
void ins(int u,int v)
{
tot++;
ret[tot]=v;
Next[tot]=Head[u];
Head[u]=tot;
}
void dfs(int u,int fa)
{
g[u][0]=f[u][0]=flag[u]?w[u]:0 ;
for(int i=1;i<=d;i++)g[u][i]=w[u];
g[u][d+1]=inf;
for (int i=Head[u];i;i=Next[i])
{
int v=ret[i];
if (v!=fa)
{
dfs(v,u);
for (int j=0;j<=d;j++) g[u][j]=min(g[u][j]+f[v][j],g[v][j+1]+f[u][j+1]);
for (int j=d;j>=0;j--) g[u][j]=min(g[u][j],g[u][j+1]);
f[u][0]=g[u][0];
for (int j=1;j<=d;j++) f[u][j]+=f[v][j-1];
for (int j=1;j<=d;j++) f[u][j]=min(f[u][j],f[u][j-1]);
}
}
}
int main()
{
n=read();d=read();
for (int i=1;i<=n;i++) w[i]=read();
m=read();
for (int i=1;i<=m;i++) flag[read()]=1;
for (int i=1;i<n;i++)
{
int u=read(),v=read();
ins(u,v);ins(v,u);
}
dfs(1,0);
printf("%d",f[1][0]);
return 0;
}