Description
Farmer John新买了一块长方形的牧场,这块牧场被划分成M列N行(1<=M<=12; 1<=N<=12),每一格都是一块正方形的土地。FJ打算在牧场上的某几格土地里种上美味的草,供他的奶牛们享用。遗憾的是,有些土地相当的贫瘠,不能用来放牧。并且,奶牛们喜欢独占一块草地的感觉,于是FJ不会选择两块相邻的土地,也就是说,没有哪两块草地有公共边。当然,FJ还没有决定在哪些土地上种草。 作为一个好奇的农场主,FJ想知道,如果不考虑草地的总块数,那么,一共有多少种种植方案可供他选择。当然,把新的牧场荒废,不在任何土地上种草,也算一种方案。请你帮FJ算一下这个总方案数。
Input
第1行: 两个正整数M和N,用空格隔开
第2..M+1行: 每行包含N个用空格隔开的整数,描述了每块土地的状态。输入的第i+1行描述了第i行的土地。所有整数均为0或1,是1的话,表示这块土地足够肥沃,0则表示这块地上不适合种草
Output
- 第1行: 输出一个整数,即牧场分配总方案数除以100,000,000的余数
Sample Input
2 3
1 1 1
0 1 0
Sample Output
9
输出说明:
按下图把各块土地编号:
1 2 3
4
只开辟一块草地的话,有4种方案:选1、2、3、4中的任一块。开辟两块草地的话,有3种方案:13、14以及34。选三块草地只有一种方案:134。再加把牧场荒废的那一种,总方案数为4+3+1+1=9种。
题解
裸状压dp
代码
#include<bits/stdc++.h>
#define N 500005
#define ll long long
#define inf 100000000
#define mod 100000000
using namespace std;
inline int read()
{
int x=0;char ch=getchar();
while (ch<'0'||ch>'9') ch=getchar();
while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x;
}
int ans,dp[13][5005],n,m,a[13];
bool f[5005][5005];
void dfs(int p,int s1,int s2)
{
if (p==m){f[s1][s2]=1;return;}
dfs(p+1,s1<<1,s2<<1);
if (s1&1) dfs(p+1,s1<<1,s2<<1|1);
else if (s2&1) dfs(p+1,s1<<1|1,s2<<1);
else
{
dfs(p+1,s1<<1,s2<<1|1);
dfs(p+1,s1<<1|1,s2<<1);
}
}
int main()
{
n=read();m=read();
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
{
int x=read();x=1-x;
a[i]<<=1;a[i]|=x;
}
dfs(0,0,0);
dp[0][0]=1;
int all=(1<<m)-1;
for (int i=0;i<=n-1;i++)
for (int j=0;j<=all;j++)
{
if (a[i]&j) continue;
for (int k=0;k<=all;k++)
{
if ((a[i+1]&k)||!f[j][k]) continue;
dp[i+1][k]=(dp[i+1][k]+dp[i][j])%mod;
}
}
for (int i=0;i<=all;i++)
ans=(ans+dp[n][i])%mod;
printf("%d",ans);
return 0;
}