【bzoj2097】[Usaco2010 Dec]Exercise 奶牛健美操

Description

Farmer John为了保持奶牛们的健康,让可怜的奶牛们不停在牧场之间 的小路上奔跑。这些奶牛的路径集合可以被表示成一个点集和一些连接 两个顶点的双向路,使得每对点之间恰好有一条简单路径。简单的说来, 这些点的布局就是一棵树,且每条边等长,都为1。 对于给定的一个奶牛路径集合,精明的奶牛们会计算出任意点对路径的最大值, 我们称之为这个路径集合的直径。如果直径太大,奶牛们就会拒绝锻炼。 Farmer John把每个点标记为1..V (2 <= V <= 100,000)。为了获得更加短 的直径,他可以选择封锁一些已经存在的道路,这样就可以得到更多的路径集合, 从而减小一些路径集合的直径。 我们从一棵树开始,FJ可以选择封锁S (1 <= S <= V-1)条双向路,从而获得 S+1个路径集合。你要做的是计算出最佳的封锁方案,使得他得到的所有路径集合 直径的最大值尽可能小。 Farmer John告诉你所有V-1条双向道路,每条表述为:顶点A_i (1 <= A_i <= V) 和 B_i (1 <= B_i <= V; A_i!= B_i)连接。 我们来看看如下的例子:线性的路径集合(7个顶点的树) 1—2—3—4—5—6—7 如果FJ可以封锁两条道路,他可能的选择如下: 1—2 | 3—4 | 5—6—7 这样最长的直径是2,即是最优答案(当然不是唯一的)。
Input

  • 第1行: 两个空格分隔的整数V和S * 第2…V行: 两个空格分隔的整数A_i和B_i
    Output

  • 第1行:一个整数,表示FJ可以获得的最大的直径。
    Sample Input

7 2

6 7

3 4

6 5

1 2

3 2

4 5

Sample Output

2

题解
求最大值最小,显然二分答案,考虑判断答案是否可行,每次dfs,贪心地删去大于答案的路径。

代码

#include<bits/stdc++.h>
#define ll long long
#define inf 10000005
using namespace std;
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
int tot,ret[200005],Next[200005],Head[100005];
int top,stk[100005],n,k,D,ans,dis[100005];
inline void ins(int u,int v)
{
    ret[++tot]=v;Next[tot]=Head[u];Head[u]=tot;
}
void dfs(int u,int fa)
{
    int bottom=top;
    for (int i=Head[u];i;i=Next[i])
    {
        if (ret[i]==fa) continue;
        dfs(ret[i],u);
        stk[++top]=dis[ret[i]]+1;
    }
    sort(stk+bottom+1,stk+top+1);int i;
    for (i=top;i>bottom;i--)
        if (stk[i]>D||(i>bottom+1&&stk[i]+stk[i-1]>D)) ans++;
        else break;
    dis[u]=i==bottom?0:stk[i];
    top=bottom;
}
bool check(int mid)
{
    D=mid;ans=top=0;
    dfs(1,0);
    return ans<=k;
}
int main()
{
    n=read();k=read();
    for (int i=1;i<n;i++)
    {
        int u=read(),v=read();
        ins(u,v);ins(v,u);
    }
    int l=0,r=n;
    while (l!=r)
    {
        int mid=(l+r)>>1;
        if (check(mid)) r=mid;else l=mid+1;
    }
    printf("%d",l);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值