Description
Farmer John为了保持奶牛们的健康,让可怜的奶牛们不停在牧场之间 的小路上奔跑。这些奶牛的路径集合可以被表示成一个点集和一些连接 两个顶点的双向路,使得每对点之间恰好有一条简单路径。简单的说来, 这些点的布局就是一棵树,且每条边等长,都为1。 对于给定的一个奶牛路径集合,精明的奶牛们会计算出任意点对路径的最大值, 我们称之为这个路径集合的直径。如果直径太大,奶牛们就会拒绝锻炼。 Farmer John把每个点标记为1..V (2 <= V <= 100,000)。为了获得更加短 的直径,他可以选择封锁一些已经存在的道路,这样就可以得到更多的路径集合, 从而减小一些路径集合的直径。 我们从一棵树开始,FJ可以选择封锁S (1 <= S <= V-1)条双向路,从而获得 S+1个路径集合。你要做的是计算出最佳的封锁方案,使得他得到的所有路径集合 直径的最大值尽可能小。 Farmer John告诉你所有V-1条双向道路,每条表述为:顶点A_i (1 <= A_i <= V) 和 B_i (1 <= B_i <= V; A_i!= B_i)连接。 我们来看看如下的例子:线性的路径集合(7个顶点的树) 1—2—3—4—5—6—7 如果FJ可以封锁两条道路,他可能的选择如下: 1—2 | 3—4 | 5—6—7 这样最长的直径是2,即是最优答案(当然不是唯一的)。
Input
第1行: 两个空格分隔的整数V和S * 第2…V行: 两个空格分隔的整数A_i和B_i
Output第1行:一个整数,表示FJ可以获得的最大的直径。
Sample Input
7 2
6 7
3 4
6 5
1 2
3 2
4 5
Sample Output
2
题解
求最大值最小,显然二分答案,考虑判断答案是否可行,每次dfs,贪心地删去大于答案的路径。
代码
#include<bits/stdc++.h>
#define ll long long
#define inf 10000005
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int tot,ret[200005],Next[200005],Head[100005];
int top,stk[100005],n,k,D,ans,dis[100005];
inline void ins(int u,int v)
{
ret[++tot]=v;Next[tot]=Head[u];Head[u]=tot;
}
void dfs(int u,int fa)
{
int bottom=top;
for (int i=Head[u];i;i=Next[i])
{
if (ret[i]==fa) continue;
dfs(ret[i],u);
stk[++top]=dis[ret[i]]+1;
}
sort(stk+bottom+1,stk+top+1);int i;
for (i=top;i>bottom;i--)
if (stk[i]>D||(i>bottom+1&&stk[i]+stk[i-1]>D)) ans++;
else break;
dis[u]=i==bottom?0:stk[i];
top=bottom;
}
bool check(int mid)
{
D=mid;ans=top=0;
dfs(1,0);
return ans<=k;
}
int main()
{
n=read();k=read();
for (int i=1;i<n;i++)
{
int u=read(),v=read();
ins(u,v);ins(v,u);
}
int l=0,r=n;
while (l!=r)
{
int mid=(l+r)>>1;
if (check(mid)) r=mid;else l=mid+1;
}
printf("%d",l);
return 0;
}