有一个庞大的家族,共n人。已知这n个人的祖辈关系正好形成树形结构(即父亲向儿子连边)。
在另一个未知的平行宇宙,这n人的祖辈关系仍然是树形结构,但他们相互之间的关系却完全不同了,原来的祖先可能变成了后代,后代变成的同辈……
两个人的亲密度定义为在这两个平行宇宙有多少人一直是他们的公共祖先。
整个家族的亲密度定义为任意两个人亲密度的总和。
Input
第一行一个数n(1<=n<=100000)
接下来n-1行每行两个数x,y表示在第一个平行宇宙x是y的父亲。
接下来n-1行每行两个数x,y表示在第二个平行宇宙x是y的父亲。
Output
一个数,表示整个家族的亲密度。
Input示例
5
1 3
3 5
5 4
4 2
1 2
1 3
3 4
1 5
Output示例
6
题解
把问题考虑为每个点为祖先对答案的贡献,问题就转化成求某个点为根的子树在两颗树中相同的个数。
有关子树的问题,可以利用dfs序处理,先扫一棵树记录dfs序,在扫第二棵树,利用树状数组记录信息。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<set>
#include<ctime>
#include<vector>
#include<cmath>
#include<algorithm>
#include<map>
#define mod 1000000007
#define ll long long
#define inf 1e9
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int rt,tot,ret[100005],Next[100005],Head[100005];
int tim,n,l[100005],r[100005],t[100005];
bool vis[100005];
ll ans;
inline void ins(int u,int v)
{
ret[++tot]=v;Next[tot]=Head[u];Head[u]=tot;
}
void dfs(int u,int pre)
{
l[u]=++tim;
for (int i=Head[u];i;i=Next[i])
{
if (ret[i]==pre) continue;
dfs(ret[i],u);
}
r[u]=tim;
}
inline int lowbit(int x){return x&-x;}
void update(int x)
{
for (int i=x;i<=n;i+=lowbit(i))
t[i]++;
}
int query(int x)
{
int ans=0;
for (int i=x;i;i-=lowbit(i))
ans+=t[i];
return ans;
}
void find(int u,int pre)
{
int now=query(r[u])-query(l[u]);
for (int i=Head[u];i;i=Next[i])
{
if (ret[i]==pre) continue;
update(l[ret[i]]);
find(ret[i],u);
}
now=query(r[u])-query(l[u])-now;
ans+=(ll)(now-1)*now/2;
}
int main()
{
n=read();
for (int i=1;i<n;i++)
{
int x=read(),y=read();
ins(x,y);
vis[y]=1;
}
for (int i=1;i<=n;i++)
{
if (!vis[i]) rt=i;
vis[i]=0;
}
dfs(rt,0);
for (int i=1;i<=n;i++) Head[i]=0;tot=0;
for (int i=1;i<n;i++)
{
int x=read(),y=read();
ins(x,y);
vis[y]=1;
}
for (int i=1;i<=n;i++) if (!vis[i]){rt=i;break;}
find(rt,0);
printf("%lld",ans);
return 0;
}