众所周知,有一个神秘的组织——战忽局,在暗中保护着我们。在局中任职的官员都有着极强的忽悠技巧,不只能用预言,还能用往事忽悠人。如今某外星间谍已经获得了战忽局曾经参与的n次事件的资料,局座发现了这件事,于是决定再次用忽悠来保证战忽局的安全。局座将发表m次演讲,每一天他都会从n事件中等概率地挑选一件混淆众人,由于局座每天很忙,不能把之前将的事件都记录下来,因此他可能会重复选择某一件事。现在局座想知道,m次演讲过后,期望能使多少事件混淆众人。
Input
第一行一个整数T(1<=T<=1000),表示数据组数。接下来T行每行两个正整数n,m(1<=n,m<=1e18)分别表示事件数和局座演讲的次数。
Output
对于每组数据输出一行一个实数ans,表示局座在m次演讲之后期望混淆众人的事件数,你输入的数和标准答案的相对误差不超过1e-6视为正确。
Input示例
3
2 2
10 100000
3 2
Output示例
1.5000000
10.0000000
1.6666667
题解
记f[i]表示上了i节课后期望概率,则有f[i]=f[i-1]/n*f[i-1]+(n-f[i-1])/n*(f[i-1]+1)
矩阵优化+__float128精度外挂即可。
代码
#include<bits/stdc++.h>
#define mod 998244353
#define inv 499122177
typedef __float128 F;
typedef long long ll;
using namespace std;
inline int read()
{
int x=0;char ch=getchar();
while (ch<'0'||ch>'9') ch=getchar();
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x;
}
F ans[3][3],a[3][3];
ll n,m;
void mul(F a[3][3],F b[3][3],F c[3][3])
{
F tmp[3][3];
for (int i=1;i<=2;i++)
for (int j=1;j<=2;j++)
{
tmp[i][j]=0;
for (int k=1;k<=2;k++)
tmp[i][j]+=a[i][k]*b[k][j];
}
for (int i=1;i<=2;i++)
for (int j=1;j<=2;j++)
c[i][j]=tmp[i][j];
}
int main()
{
int Case=read();
while (Case--)
{
scanf("%lld%lld",&n,&m);
a[1][1]=(F)(n-1)/n;a[2][1]=0;
a[1][2]=a[2][2]=1;
ans[1][1]=ans[2][2]=1;
ans[1][2]=ans[2][1]=0;
m--;
while (m)
{
if (m&1) mul(ans,a,ans);
mul(a,a,a);
m>>=1;
}
F ANS=ans[1][1]+ans[1][2];
printf("%.12lf\n",(double)ANS);
}
return 0;
}