【51Nod1810】连续区间

区间内所有元素排序后,任意相邻两个元素值差为1的区间称为“连续区间”
如:3,1,2是连续区间,但3,1,4不是连续区间
给出一个1~n的排列,求出有多少个连续区间
Input
一个数n(n<=1,000,000)
第二行n个数,表示一个1~n的排列
Output
一个数,表示有多少个连续区间
Input示例
5
2 1 5 3 4
Output示例
9
样例解释:
区间[1,1][2,2][3,3][4,4][5,5][1,2][4,5][3,4][1,5]为连续区间//[l,r]表示从第l个数到第r个数构成的区间

题解
http://blog.csdn.net/f_zyj/article/details/76359956

代码

#include<bits/stdc++.h>
#define mod 998244353
#define inv 499122177
#define N 1000005
typedef __float128 F;
typedef long long ll;
using namespace std;
inline int read()
{
    int x=0;char ch=getchar();
    while (ch<'0'||ch>'9') ch=getchar();
    while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x;
}
int n,mx[N],mn[N],a[N],D[N<<2],ans;
void solve(int l,int r)
{
    if (l==r){ans++;return;}
    int mid=(l+r)>>1;
    mx[mid]=mn[mid]=a[mid];mx[mid+1]=mn[mid+1]=a[mid+1];
    for (int i=mid-1;i>=l;i--) mx[i]=max(a[i],mx[i+1]),mn[i]=min(a[i],mn[i+1]);
    for (int i=mid+2;i<=r;i++) mx[i]=max(a[i],mx[i-1]),mn[i]=min(a[i],mn[i-1]);
    for (int i=mid;i>=l;i--)
    {
        int j=i+mx[i]-mn[i];
        if (j>mid&&j<=r&&mx[i]>mx[j]&&mn[i]<mn[j]) ans++;
    }
    for (int j=mid+1;j<=r;j++)
    {
        int i=j-mx[j]+mn[j];
        if (i<=mid&&i>=l&&mx[j]>mx[i]&&mn[j]<mn[i]) ans++;
    }
    int L=mid+1,R=mid;
    for (int i=mid;i>=l;i--)
    {
        while (R<r&&mx[R+1]<mx[i])
        {
            R++;
            D[mn[R]+R+N]++;
        }
        while (L<=R&&mn[L]>mn[i])
        {
            D[mn[L]+L+N]--;
            L++;
        }
        ans+=D[mx[i]+i+N];
    }
    while (L<=R) D[mn[L]+L+N]--,L++;
    L=mid+1;R=mid;
    for (int j=mid+1;j<=r;j++)
    {
        while (L>l&&mx[L-1]<mx[j])
        {
            L--;
            D[mn[L]-L+N]++;
        }
        while (R>=L&&mn[R]>mn[j])
        {
            D[mn[R]-R+N]--;
            R--;
        }
        ans+=D[mx[j]-j+N];
    }
    while (R>=L) D[mn[R]-R+N]--,R--;
    solve(l,mid);solve(mid+1,r);
}
int main()
{
    n=read();
    for (int i=1;i<=n;i++) a[i]=read();
    solve(1,n);
    printf("%d",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值