【bzoj3514】Codechef MARCH14 GERALD07加强版

Description

N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数。

Input

第一行四个整数N、M、K、type,代表点数、边数、询问数以及询问是否加密。
接下来M行,代表图中的每条边。
接下来K行,每行两个整数L、R代表一组询问。对于type=0的测试点,读入的L和R即为询问的L、R;对于type=1的测试点,每组询问的L、R应为L xor lastans和R xor lastans。

Output

K行每行一个整数代表该组询问的联通块个数。

Sample Input

3 5 4 0

1 3

1 2

2 1

3 2

2 2

2 3

1 5

5 5

1 2

Sample Output

2

1

3

1

HINT

对于100%的数据,1≤N、M、K≤200,000。

题解
lct+主席树
Orz_yzh
借yzh大神的题解,本蒟蒻在参考yzh大神的题解及标程的情况下才勉强AC,yzh大神太强了!!!
转载自 http://blog.csdn.net/YZHYZHYZH3/article/details/78895685
lct维护最小生成树
加边时弹出标号最小的边并记录
询问n-(l~r中小于l的数个数),可持久化线段树维护

#include<bits/stdc++.h>
#define ll long long
#define inf 1000000000
using namespace std;
const int N=200005;
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
int f[N],c[N<<1][2],mn[N<<1],rev[N<<1],val[N<<1],id[N<<1];
int u[N],v[N],t[8000005],fa[N<<1],rt[N],lastans;
int n,m,Q,q[N<<1],sz,tot,ls[8000005],rs[8000005],type;
int find(int i){if (f[i]!=i)f[i]=find(f[i]);return f[i];}
bool isroot(int x){return c[fa[x]][0]!=x&&c[fa[x]][1]!=x;}
inline void update(int x)
{
    int l=c[x][0],r=c[x][1];
    mn[x]=x;
    if (val[mn[l]]<val[mn[x]]) mn[x]=mn[l];
    if (val[mn[r]]<val[mn[x]]) mn[x]=mn[r];
}
inline void pushdown(int x)
{
    int l=c[x][0],r=c[x][1];
    if (rev[x])
    {
        rev[x]^=1;rev[l]^=1;rev[r]^=1;
        swap(c[x][0],c[x][1]);
    }
}
void rotate(int x)
{
    int y=fa[x],z=fa[y],l,r;
    if (c[y][0]==x)l=0;else l=1;r=l^1;
    if (!isroot(y))
    {
        if (c[z][0]==y) c[z][0]=x;else c[z][1]=x;
    }
    fa[x]=z;fa[y]=x;
    c[y][l]=c[x][r];fa[c[x][r]]=y;c[x][r]=y;
    update(y);update(x);
}
void splay(int x)
{
    int top=1;q[top]=x;
    for (int i=x;!isroot(i);i=fa[i]) q[++top]=fa[i];
    while (top) pushdown(q[top--]);
    while (!isroot(x))
    {
        int y=fa[x],z=fa[y];
        if (!isroot(y))
        {
            if (c[z][0]==y^c[y][0]==x)rotate(x);else rotate(y);
        }
        rotate(x);
    }
}
void access(int x)
{
    int t=0;
    while (x)
    {
        splay(x);
        c[x][1]=t;
        t=x;
        update(x);
        x=fa[x];
    }
}
void makeroot(int x)
{
    access(x);splay(x);rev[x]^=1;
}
void link(int x,int y)
{
    makeroot(x);
    fa[x]=y;
}
void cut(int x,int y)
{
    makeroot(x);access(y);splay(y);
    c[y][0]=fa[x]=0;update(y);
}
int que(int x,int y)
{
    makeroot(x);access(y);splay(y);
    return val[mn[y]];
}
void insert(int &k1,int k2,int l,int r,int x)
{
    k1=++sz;
    t[k1]=t[k2]+1;
    if (l==r) return;
    ls[k1]=ls[k2];rs[k1]=rs[k2];
    int mid=(l+r)>>1;
    if (x<=mid) insert(ls[k1],ls[k2],l,mid,x);
    else insert(rs[k1],rs[k2],mid+1,r,x);
}
int query(int k1,int k2,int l,int r,int x,int y)
{
    if (l==x&&r==y) return t[k2]-t[k1];
    int mid=(l+r)>>1;
    if (y<=mid) return query(ls[k1],ls[k2],l,mid,x,y);
    else if (x>mid) return query(rs[k1],rs[k2],mid+1,r,x,y);
    else return query(ls[k1],ls[k2],l,mid,x,mid)+query(rs[k1],rs[k2],mid+1,r,mid+1,y);
}
int main()
{
    n=read();m=read();Q=read();type=read();tot=n;
    for (int i=0;i<=n;i++) val[i]=inf,f[i]=i;
    for (int i=1;i<=m;i++)
    {
        u[i]=read(),v[i]=read();
        if (u[i]==v[i])
        {
            insert(rt[i],rt[i-1],1,m,i);
            continue;
        }
        if (find(u[i])!=find(v[i]))
        {
            f[find(u[i])]=find(v[i]);
            rt[i]=rt[i-1];
            val[++tot]=i;id[i]=tot;
            link(u[i],tot);link(v[i],tot);
        }
        else
        {
            int ntr=que(u[i],v[i]);
            insert(rt[i],rt[i-1],1,m,ntr);
            cut(id[ntr],u[ntr]);cut(id[ntr],v[ntr]);
            val[++tot]=i;id[i]=tot; 
            link(u[i],tot);link(v[i],tot);
        }
    }
    while (Q--)
    {
        int l=read(),r=read();
        if (type) l^=lastans,r^=lastans;
        lastans=n-(r-l+1)+query(rt[l-1],rt[r],1,m,l,r);
        printf("%d\n",lastans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值