Description
N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数。
Input
第一行四个整数N、M、K、type,代表点数、边数、询问数以及询问是否加密。
接下来M行,代表图中的每条边。
接下来K行,每行两个整数L、R代表一组询问。对于type=0的测试点,读入的L和R即为询问的L、R;对于type=1的测试点,每组询问的L、R应为L xor lastans和R xor lastans。
Output
K行每行一个整数代表该组询问的联通块个数。
Sample Input
3 5 4 0
1 3
1 2
2 1
3 2
2 2
2 3
1 5
5 5
1 2
Sample Output
2
1
3
1
HINT
对于100%的数据,1≤N、M、K≤200,000。
题解
lct+主席树
Orz_yzh
借yzh大神的题解,本蒟蒻在参考yzh大神的题解及标程的情况下才勉强AC,yzh大神太强了!!!
转载自 http://blog.csdn.net/YZHYZHYZH3/article/details/78895685
lct维护最小生成树
加边时弹出标号最小的边并记录
询问n-(l~r中小于l的数个数),可持久化线段树维护
#include<bits/stdc++.h>
#define ll long long
#define inf 1000000000
using namespace std;
const int N=200005;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int f[N],c[N<<1][2],mn[N<<1],rev[N<<1],val[N<<1],id[N<<1];
int u[N],v[N],t[8000005],fa[N<<1],rt[N],lastans;
int n,m,Q,q[N<<1],sz,tot,ls[8000005],rs[8000005],type;
int find(int i){if (f[i]!=i)f[i]=find(f[i]);return f[i];}
bool isroot(int x){return c[fa[x]][0]!=x&&c[fa[x]][1]!=x;}
inline void update(int x)
{
int l=c[x][0],r=c[x][1];
mn[x]=x;
if (val[mn[l]]<val[mn[x]]) mn[x]=mn[l];
if (val[mn[r]]<val[mn[x]]) mn[x]=mn[r];
}
inline void pushdown(int x)
{
int l=c[x][0],r=c[x][1];
if (rev[x])
{
rev[x]^=1;rev[l]^=1;rev[r]^=1;
swap(c[x][0],c[x][1]);
}
}
void rotate(int x)
{
int y=fa[x],z=fa[y],l,r;
if (c[y][0]==x)l=0;else l=1;r=l^1;
if (!isroot(y))
{
if (c[z][0]==y) c[z][0]=x;else c[z][1]=x;
}
fa[x]=z;fa[y]=x;
c[y][l]=c[x][r];fa[c[x][r]]=y;c[x][r]=y;
update(y);update(x);
}
void splay(int x)
{
int top=1;q[top]=x;
for (int i=x;!isroot(i);i=fa[i]) q[++top]=fa[i];
while (top) pushdown(q[top--]);
while (!isroot(x))
{
int y=fa[x],z=fa[y];
if (!isroot(y))
{
if (c[z][0]==y^c[y][0]==x)rotate(x);else rotate(y);
}
rotate(x);
}
}
void access(int x)
{
int t=0;
while (x)
{
splay(x);
c[x][1]=t;
t=x;
update(x);
x=fa[x];
}
}
void makeroot(int x)
{
access(x);splay(x);rev[x]^=1;
}
void link(int x,int y)
{
makeroot(x);
fa[x]=y;
}
void cut(int x,int y)
{
makeroot(x);access(y);splay(y);
c[y][0]=fa[x]=0;update(y);
}
int que(int x,int y)
{
makeroot(x);access(y);splay(y);
return val[mn[y]];
}
void insert(int &k1,int k2,int l,int r,int x)
{
k1=++sz;
t[k1]=t[k2]+1;
if (l==r) return;
ls[k1]=ls[k2];rs[k1]=rs[k2];
int mid=(l+r)>>1;
if (x<=mid) insert(ls[k1],ls[k2],l,mid,x);
else insert(rs[k1],rs[k2],mid+1,r,x);
}
int query(int k1,int k2,int l,int r,int x,int y)
{
if (l==x&&r==y) return t[k2]-t[k1];
int mid=(l+r)>>1;
if (y<=mid) return query(ls[k1],ls[k2],l,mid,x,y);
else if (x>mid) return query(rs[k1],rs[k2],mid+1,r,x,y);
else return query(ls[k1],ls[k2],l,mid,x,mid)+query(rs[k1],rs[k2],mid+1,r,mid+1,y);
}
int main()
{
n=read();m=read();Q=read();type=read();tot=n;
for (int i=0;i<=n;i++) val[i]=inf,f[i]=i;
for (int i=1;i<=m;i++)
{
u[i]=read(),v[i]=read();
if (u[i]==v[i])
{
insert(rt[i],rt[i-1],1,m,i);
continue;
}
if (find(u[i])!=find(v[i]))
{
f[find(u[i])]=find(v[i]);
rt[i]=rt[i-1];
val[++tot]=i;id[i]=tot;
link(u[i],tot);link(v[i],tot);
}
else
{
int ntr=que(u[i],v[i]);
insert(rt[i],rt[i-1],1,m,ntr);
cut(id[ntr],u[ntr]);cut(id[ntr],v[ntr]);
val[++tot]=i;id[i]=tot;
link(u[i],tot);link(v[i],tot);
}
}
while (Q--)
{
int l=read(),r=read();
if (type) l^=lastans,r^=lastans;
lastans=n-(r-l+1)+query(rt[l-1],rt[r],1,m,l,r);
printf("%d\n",lastans);
}
return 0;
}