Description
Alice家里有一盏很大的吊灯。所谓吊灯,就是由很多个灯泡组成。只有一个灯泡是挂在天花板上的,剩下的灯泡都是挂在其他的灯泡上的。也就是说,整个吊灯实际上类似于一棵树。其中编号为1的灯泡是挂在天花板上的,剩下的灯泡都是挂在编号小于自己的灯泡上的。
现在,Alice想要办一场派对,她想改造一下这盏吊灯,将灯泡换成不同的颜色。她希望相同颜色的灯泡都是相连的,并且每一种颜色的灯泡个数都是相同的。
Alice希望你能告诉她,总共有哪些方案呢?
Alice是一个贪心的孩子,如果她发现方案不够多,或者太多了,就会很不高兴,于是她会尝试调整。对于编号为x(x≠1)的灯泡,如果原来是挂在编号为f[x]的灯泡上,那么Alice会把第x个灯泡挂到第 ( f[x] + 19940105 ) mod (x-1) + 1 个灯泡上。
由于九在古汉语中表示极大的数,于是,Alice决定只调整9次。对于原始状态和每一次调整过的状态,Alice希望你依次告诉她每种状态下有哪些方案。
Input
第一行一个整数n,表示灯泡的数量。
接下来一行,有n-1个整数Ui,第i个数字表示第i+1个灯泡挂在了Ui个的下面。保证编号为1的灯泡是挂在天花板上的。数字之间用逗号‘,’隔开且最后一个数字后面没有逗号。
Output
对于10种状态下的方案,需要按照顺序依次输出。
对于每一种状态,需要先输出单独的一行,表示状态编号,如样例所示。
之后若干行,每行1个整数,表示划分方案中每种颜色的灯泡个数。
按升序输出。
Sample Input
6
1,2,3,4,5
Sample Output
Case #1:
1
2
3
6
Case #2:
1
2
6
Case #3:
1
3
6
Case #4:
1
3
6
Case #5:
1
3
6
Case #6:
1
2
6
Case #7:
1
2
3
6
Case #8:
1
6
Case #9:
1
2
6
Case #10:
1
3
6
HINT
对于100%的数据,n<=1.2*106。
题解
结论题,如果ans是一个合法的块的大小,那么在n个点中子树大小是ans的倍数的节点数一定等于n/ans。
统计每个节点的子树大小,加入桶中,枚举n的因数判断。