笔记
w_zhao
这个作者很懒,什么都没留下…
展开
-
《计算机网络听课笔记2》
数据交换: 报文交换:一个文件作为一个整体一次性转发 分组交换:报文拆出的小的数据包 均属于存储转发方式 电路交换:占用带宽头数据分组交换VS电路交换 分组交换: 允许更多的用户同时使用网络——网络资源充分共享 适用于突发数据传输网络:简单,无需建立呼叫 可能出现拥塞:分组延迟和丢失,需要协议处理数据的传输...原创 2018-03-08 21:22:53 · 1488 阅读 · 0 评论 -
LeetCode算法
Given an array of integers, return indices of the two numbers such that they add up to a specific target.You may assume that each input would have exactly one solution.Example:Given nums = [2, 7, 11, ...原创 2018-03-09 15:38:26 · 158 阅读 · 0 评论 -
Python常用模块库
1. 数值计算库NumPy 为 Python 提供了快速的多维数组处理能力,提供了丰富的函数库处理数组。它将常用的数学函数进行数组化,使得数学函数能够直接对数组进行操作,将需要在 Python 级别进行的循环,放到 C 语言的运算中,提高程序的运行速度。NumPy的官方网址为 http://www.numpy.org/SciPy 在 NumPy 基础上添加了众多的科学计算所需的各种工具...翻译 2018-11-16 09:29:33 · 5789 阅读 · 0 评论 -
李航统计学习总结:EM算法、朴素贝叶斯、隐马尔可夫、随机向量场
目录EM算法朴素贝叶斯模型图规划模型隐马尔可夫模型条件随机场(CRF)EM算法EM算法是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计,或极大后验概率估计。其过程主要分为两步:E步,求期望 M步,求极大因此,又被称为期望极大化算法。EM算法根据算法不同的初值可能会有不同的参数估计值。EM算法的导出:对一个含有隐变量的概率模型,目标时...原创 2019-03-29 21:20:51 · 1587 阅读 · 0 评论 -
李航统计学习方法总结
10种统计学习方法特点的总结概括 方法 适用问题 模型特点 模型类型 学习策略 学习的损失函数 学习算法 备注 感知机 二类分类 分离超平面 判别模型 极小化误分类点到超平面的距离 误分类点到超平面距离(经验风险) 随机梯度下降 ...原创 2019-03-26 14:23:53 · 1736 阅读 · 0 评论 -
李航统计学习方法总结与整理
感知机(perception):二类分类的线性模型,输入为实例的特征向量,输出为实例的类别,取+1,-1。对应于输入空间中将样本实例分成正负两类的分离超平面,属于判别模型。其损失函数为:所有误分类点到分类超平面的距离总和。目的为最小化这个距离总和。 其中,为误分类点到分离超平面距离...原创 2019-03-26 22:22:18 · 15816 阅读 · 2 评论 -
李航统计学习:k近邻、决策树、最大熵、逻辑斯蒂回归、提升方法
k近邻–>决策树–>最大熵–>逻辑斯蒂回归–>提升方法k近邻法(K-NN)是一种基本的用于分类与回归的方法。其输入为:实例的特征向量,对应特征空间中的点输出为:实例的类别,可以取多类。k近邻假设给定一个训练数据集,其中的类别已经确定。分类时,对新的实例,根据其k个最近邻的训练实例的类别,通过多数表决等方式进行预测。y=argmaxcj∑xi∈Nk(x)I(yi...原创 2019-03-27 23:07:33 · 496 阅读 · 0 评论