对图像进行简单卷积和池化

本文深入探讨了卷积和池化在深度学习中的基本原理,通过实例使用numpy解释了如何对图像进行卷积和池化操作,以提取特征并降低计算复杂度,对于理解和实现卷积神经网络具有指导意义。
摘要由CSDN通过智能技术生成
import torch
import torch.nn as nn
from PIL import Image
import numpy as np

img = Image.open("pic1.jpeg")#加载图片
img = np.array(img)#转为numpy形式
#print(img.shape)
img = np.reshape(img,(1,1244,700,3))#转为NHWC形状(给N赋值1)
img = np.transpose(img,(0,3,1,2))#转为NCHW(pytorch需要的格式)
img = torch.Tensor(img)#转为Tensor模式,且为小数
print(img.size())
layer1 = nn.Conv2d(3,3,3,1)
layer2 = nn.MaxPool2d(2)
layer3 = nn.Conv2d(3,3,3,1)
layer4 = nn.MaxPool2d(2)
layer5 = nn.Conv2d(3,3,3,1)
layer6 = nn.MaxPool2d(2)
img = layer1(img)
img = layer2(img)
img = layer3(img)
img = layer4(img)
img = layer5(img)
img = layer6(img)#数据传到池化层
print(img.size())
#Tensor转为图片
img = img.data"""(从Variabl取出Tensor)
卷积里的变量Variable(w)不能变num
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wa1tzy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值