import torch
import torch.nn as nn
from PIL import Image
import numpy as np
img = Image.open("pic1.jpeg")#加载图片
img = np.array(img)#转为numpy形式
#print(img.shape)
img = np.reshape(img,(1,1244,700,3))#转为NHWC形状(给N赋值1)
img = np.transpose(img,(0,3,1,2))#转为NCHW(pytorch需要的格式)
img = torch.Tensor(img)#转为Tensor模式,且为小数
print(img.size())
layer1 = nn.Conv2d(3,3,3,1)
layer2 = nn.MaxPool2d(2)
layer3 = nn.Conv2d(3,3,3,1)
layer4 = nn.MaxPool2d(2)
layer5 = nn.Conv2d(3,3,3,1)
layer6 = nn.MaxPool2d(2)
img = layer1(img)
img = layer2(img)
img = layer3(img)
img = layer4(img)
img = layer5(img)
img = layer6(img)#数据传到池化层
print(img.size())
#Tensor转为图片
img = img.data"""(从Variabl取出Tensor)
卷积里的变量Variable(w)不能变num
对图像进行简单卷积和池化
最新推荐文章于 2022-04-26 20:06:39 发布
本文深入探讨了卷积和池化在深度学习中的基本原理,通过实例使用numpy解释了如何对图像进行卷积和池化操作,以提取特征并降低计算复杂度,对于理解和实现卷积神经网络具有指导意义。
摘要由CSDN通过智能技术生成