1 原文链接:http://carlosfu.iteye.com/blog/2254154
美团网的DBA负责人侯军伟给大家介绍了美团网在redis上踩得一些坑,讲的都是干货和坑。
分为5个部分:
附赠PPT:
(1) 本次:美团在Redis上踩过的一些坑PPT
(2) 以往:《Redis在新浪的大规模运维经验》-演讲人:侯军伟新浪高级DBA.pdf
有关Redis-Cluster的详细介绍有很多这里就不多说了,可以参考:
3. 本博客的一些Redis-Cluster的介绍(未更新完毕)
4. Redis设计与实现那本书(作者:黄建宏):非常的推荐看这本书。
新书《Redis开发与运维》近期已经截稿。
2 美团在Redis上踩过的一些坑-3.redis内存占用飙升
http://carlosfu.iteye.com/blog/2254571
client_longes_output_list
3 Redis客户端查询缓冲区和输出缓冲区
https://github.com/ZhuoRoger/blog
每个Redis客户端(以下简称”Client”)都有多个状态属性,而理解和分析这些属性,对于我们设计Redis键空间和运营管理都有帮助。
本文将详细分析Client的两个重要属性:Query buffer(输入缓冲区)、Output buffers(输出缓冲区)
Redis Client属性一览
使用redis client命令可查看当前Redis实例的所有客户端;每行数据对应一个客户端。
1 2 3 | 127.0.0.1:6390> client list id=2 addr=127.0.0.1:53184 fd=8 name= age=33 idle=24 flags=N db=0 sub=0 psub=0 multi=-1 qbuf=0 qbuf-free=0 obl=0 oll=0 omem=0 events=r cmd=client id=3 addr=127.0.0.1:53190 fd=7 name= age=2 idle=0 flags=N db=0 sub=0 psub=0 multi=-1 qbuf=0 qbuf-free=32768 obl=0 oll=0 omem=0 events=r cmd=client |
以上为两个客户端,每个包含18个字段属性;其中属性的基本含义此处简单说明,后文会对重启指标深入分析。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | id:客户端唯一标识, 每新创建一个连接就自增1;redis重启后重置1。 addr: 客户端源ip:port;用于分析异常的客户端,定位是由哪个服务器哪个进程引起的; 如id=2的客户端 netstat -anp | grep 53184 fd: socket的文件描述符;数值同lsof的FD字段相同 name: 客户端的名字,默认不会设置,一般用处不大。可手动执行[clientsetname](http://redis.io/commands/client-setname) age: 客户端存活的秒数 idle: 空闲的秒数;用于回收客户端和分析大量连接时有用 flages:客户端类型的标志, 共13种,常用的几种:N(普通客户端),M(master),S(slave),O(执行monitor) db:客户端当前使用的database序号 sub/psub: 快订阅的频道/模式数 multi:当前事务中已执行命令个数 qbuf: query buffer的字节数 重要 qbuf-free: query buffer的剩余字节数 obl:定长Output buffer的使用字节数 oll:可变大小output buffer的对象个数 omem:可变大小output buffer的内存使用字节数 重要 events: 文件描述符事作件(r/w) cmd:客户端最近一次执行的命令,不包含参数 |
Redis Client Query Buffer
每个Client都有一个query buffer(查询缓存区或输入缓存区), 它用于保存客户端的发送命令,redis server从query buffer获取命令并执行。
query buffer size
每个客户端query buffer自动动态调整使用内存大小的,范围在0~1GB之间;当某个客户端的query buffer使用超过1GB, server会立即关闭它,为避免过度使用内存,触发oom killer。
很遗憾query buffer的大小限制是硬编码的1GB,没法控制配置参数修改。
1 2 3 | server.h#163 /* Protocol and I/O related defines */ #define PROTO_MAX_QUERYBUF_LEN (1024*1024*1024) /* 1GB max query buffer. */ |
如果程序的Key设计不合理,客户端使用大量的query buffer,这会导致redis server比较危险,很容易达到maxmeory限制,导致缓存数据被清空、数据无法写入和oom.
query buffer不受maxmeory限制
模拟100个客户端,连续写入大小为500MB(生产建议小于1KB)的Key; redis server设置maxmemory为4gb,但redis实际已用内存43gb(见used_memory)。
结论是query buffer使用内存不受maxmemory的限制,这BUG已经提给官方, 如不能限制redis使用的内存量,
很易导致redis过度使用内存,无法控制出现oom.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | 127.0.0.1:6390> info memory # Memory used_memory:46979129016 used_memory_human:43.75G used_memory_rss:49898303488 used_memory_rss_human:46.47G used_memory_peak:54796105584 used_memory_peak_human:51.03G total_system_memory:134911881216 total_system_memory_human:125.65G maxmemory:4294967296 maxmemory_human:4.00G maxmemory_policy:allkeys-random mem_fragmentation_ratio:1.06 mem_allocator:jemalloc-4.0.3 ## 当client断开后,rss会马上释放内存给OS |
query buffer占用内存,会计入maxmemory, 如果达到maxmemory限制,会触发KEY的LRU淘汰或无法写入新数据。
1 2 | 127.0.0.1:6390> set a b (error) OOM command not allowed when used memory > 'maxmemory'. |
query buffer使用查看
如前文介绍,用client list命令,观察qbuf和qbuf-free两个字段,就是client query buffer使用内存大小。
如下示例(省去部分字段)
1 2 3 4 5 | 27.0.0.1:6390> client list id=169 qbuf=128679888 qbuf-free=425984 obl=0 oll=0 omem=0 events=r cmd=NULL id=171 qbuf=128679888 qbuf-free=425984 obl=0 oll=0 omem=0 events=r cmd=NULL id=218 qbuf=128679888 qbuf-free=425984 obl=0 oll=0 omem=0 events=r cmd=NULL id=151 qbuf=128696272 qbuf-free=425984 obl=0 oll=0 omem=0 events=r cmd=NULL |
避免query buffer过度使用
- 禁用大KEY,尽量保证key小于1KB; 虽redis支持512MB大小string。
- 监控redis内存使用,如果忽高忽低,极有可能query buffer引起
- 核心Redis集群定期收集client list并分析qbuf的使用量
- 建议官方提供query buffer size的设置参数,以保证过载保护
Client Output buffer
客户端输出缓存区:执行命令所返回的结果会保存到output buffer,返回给客户端。
每个客户端都有2个query buffer:
- 静态定长16KB的缓存区;主要快速存储返回比较小的结果;如简单的get等
- 动态大小缓冲区;存储返回较大的结果,如大的集合类型:set/list/hash
因为静态的buffer,一般无性能和风险影响,这里简单介绍。1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#define PROTO_REPLY_CHUNK_BYTES (16*1024) /* 16k output buffer */
/* With multiplexing we need to take per-client state.
* Clients are taken in a linked list. */
typedef struct client {
uint64_t id; /* Client incremental unique ID. */
redisDb *db; /* Pointer to currently SELECTed DB. */
robj *name; /* As set by CLIENT SETNAME. */
sds querybuf; /* Buffer we use to accumulate client queries. */
list *reply; /* List of reply objects to send to the client. */
/* Response buffer */
int bufpos;
char buf[PROTO_REPLY_CHUNK_BYTES];
} client;
我们常说的output buffer都是指“动态大小的输出缓冲区”。
output buffer大小限制
和qeury buffer不同,output buffer提供配置参数”client-output-buffer-limit”设置buffer的使用大小。
下面是limit的设置格式
1 2 3 | client-output-buffer-limit normal 10mb 5mb 60 client-output-buffer-limit slave 256mb 64mb 60 client-output-buffer-limit pubsub 32mb 8mb 60 |
redis对3种不同客户端类型,可设置对应的buffer limit规则
- normal: 普通的客户端
- slave: 从库复制,连接到主库的客户端
- pubsub: 发布/订阅客户端
设置的limit规则3个值: hard limit size, soft limit size, soft limit second;
只要客户端使用output buffer内存大小超过hard limit限制,redis会立即关闭此客户端;
使用buffer内存大小超过soft limit,并且持续soft limit秒数,redis也会立即关闭此客户端。
被关闭客户端信息会打印到redis日志文件中,格式如下:
1 2 3 | 569:M 18 Jun 21:12:57.775 # Client id=972 addr=127.0.0.1:57934 fd=107 name= age=2 idle=0 flags=O db=0 sub=0 psub=0 multi=-1 qbuf=0 qbuf-free=0 obl=0 oll=366 omem=10492208 events=rw cmd=monitor scheduled to be closed ASAP for overcoming of output buffer limits. |
查看output buffer使用
主要查开client list的obl(静态定长buffer)
omem: 当前客户端使用output buffer的内存字节数
如下客户端执行monitor命令(cmd=monitor), 已使用buffer内存是10492208,超过normal的hard limit 10mb
所以被redis关闭。
1 | id=972 addr=127.0.0.1:57934 idle=0 flags=O db=0 qbuf=0 qbuf-free=0 obl=0 oll=366 omem=10492208 events=rw cmd=monitor |
另外output buffer受maxmemory的限制,基本不会超过maxmemory设置值
合理使用output buffer
因为output buffer是每个客户端都有,如使用不当,每个占用1mb * 10000 clients就约使用10G内存;
所以要有效限制程序滥用。
- 对于normal限制尽量小,可避免程序过度使用output buffer.
- 监控redis used_memory如果抖动严重,极有可能
- 增加slave的limit限制,避免slave同步线程被杀,导致无限循环同步数据;且slave线程和挂载的slave个数相同,理论只有几个
- 禁止生产环境使用monitor命令,在高QPS环境下,monitor很快会产生output query使用
如何监控output buffer和query buffer
从前文可见, 如果业务使用redis不当,两个buffer有可能导致内存爆涨,redis缓存数据被全部淘汰,甚于出现oom.
那么怎么监测两个buffer的使用情况,提前发现系统的异常行为,并告警就显得很重要。
这里提供两种不同监控采集方法:
- 通过采集client list输出,并分别统计求各所有客户端的(qbuf+ qbuf-free) 和 omem
- 使用info的clients section中的client_biggest_input_buf和client_longest_output_list两个指标来监控告警
第一种方法可精确统计当前时刻(buffer完全动态分配回收), redis使用的buffer内存容量;但要使用client list命令周期性统计,对于连接数较大redis实例,会导致数十毫秒卡顿(基准测试1w空连接,client list命令耗时约14.5ms);
因为至少每隔几分钟要采集一次,在高并发实例下,这样耗时是不能被接受的,这就是常用的观察者效应。
在open-falcon的redis监控插件redismon, 我们用第二个方法,通过info采集;
两个指标表示的含义:
- client_biggest_input_buf:当前实例所有客户端中,最大query buffer内存的字节数。 告警阈值建议10485760(10M),根据业务再调整。
- client_longest_output_list:当前实例所有客户端中, 最长output buffer的个数。告警阈值建议500长度(前文例子中monitor客户端长度是336,output buffer约10M),不过常用keys,monitor,或复制sync过程,会触发告警。
两个指标只能反映,其中使用buffer最厉害那个客户端的使用的内存量;不能直接反映所有客户端使用两个buffer内存消耗。
但合理设置告警值,也能直接监测试redis系统用于buffer内存有异常,并跟踪定位异常导致的点;
因第二种方法,每分钟监控采集一次对系统无影响;虽没前者直观,也能定位发现问题了,觉得这就是一个tradeoff点。
Redis两个客户端的Buffer就简单介绍这些。后续文章会讲redis的监控和buffer相样的故障问题。