学习happytang的代码

本文介绍了一种针对特定位串进行翻转处理的算法实现,通过遍历和比较历史状态来达到消除孤立位的目的。文章详细展示了算法的流程,并提供了完整的C语言代码示例。

#include <stdio.h> #include <stdlib.h>

#define N 14
#define true 1
#define false 0
/*
例如,对于00100101011101,变换过程是:
(1)11111101000001 注:红色字是变化过的
(2)00000001111111
(3)11111110000000
(4)00000001111111已经出现,结束。

*/
int temp[N+1] = {0};//存储孤立的点
int g_ulCount = 0;//转换次数

void reverse(int *psrc,int pdst[N][N+1])
{
   
int i;
    g_ulCount
++;
    memcpy(
&pdst[g_ulCount],psrc,(N+1)*sizeof(int));
   
for (i=1;i<=N;i++)
    {
       
if(temp[i]!=1)
        {
           
*((int *)&pdst[g_ulCount]+i) = psrc[i] ^ 0x01;
        }
       
else
            temp[i]
= 0;
    }
}

int cmp(int *psrc,int pdst[N][N+1])
{
   
int i;
   
for (i=1;i<g_ulCount;i++)
    {
       
if (!memcmp(psrc,&pdst[i],(N+1)*sizeof(int)))
        {
           
return true;
        }
    }
   
return false;
}

void display(int pdst[N][N+1])
{
   
int i;
    printf(
"第 %d 次转换结果是:/n/r",g_ulCount);
   
for (i=1;i<=N;i++)
    {
        printf(
"%d",*((int *)&pdst[g_ulCount]+i));
    }
    printf(
"/n");
}

int main( void )
{
   
int i;
   
int src[N+1] = {0,0,0,1,0,0,1,0,1,0,1,1,1,0,1};
   
int dst[N][N+1] = {0};
   
while(1)
    {   
       
//遍历找出孤立元素
        for (i=1;i<=N;i++)
        {
           
if (1==i)
            {
               
if(src[i] == src[i+1])
                   
continue;
                temp[
1] = 1;
            }
           
else if (N==i)
            {
               
if(src[i] == src[i-1])
                   
continue;
                temp[N]
= 1;
            }
           
else if ((src[i] == src[i+1])||(src[i] == src[i-1]))
            {
               
continue;
            }
            temp[i]
= 1;
        }

       
//整个数组元素取反
        reverse(src,dst);

       
//显示变换次数和变换后的元素
        display(dst);
        memcpy(src,
&dst[g_ulCount],(N+1)*sizeof(int));

       
//比较是否和之前相等
        if(true == cmp(src,dst))
           
break;
    }
    printf(
"输出最后的结果:/n/r");
    display(dst);
   
   
return 0;
}

内容概要:本文详细介绍了一个基于秃鹰搜索算法(BES)优化最小二乘支持向量机(LSSVM)的多特征分类预测项目,涵盖从理论原理、模型架构、代码实现到GUI界面设计的完整流程。项目通过BES算法自动优化LSSVM的关键参数(如正则化参数C和核函数参数gamma),提升模型在高维、多特征数据下的分类精度与泛化能力。结合特征工程、交叉验证、数据增强等技术,有效应对过拟合与参数调优难题,并通过混淆矩阵、ROC曲线、t-SNE可视化等多种方式实现结果解释与模型评估。项目还提供了完整的目录结构、模块化代码封装、并行计算支持及可扩展的部署架构,适用于金融风控、医疗诊断、工业故障检测等多个领域。; 适合人群:具备一定Python编程基础和机器学习知识的研发人员、数据科学家及工程技术人员,尤其适合从事智能算法开发、模型优化与实际工程落地的相关从业者;工作年限建议在1-5年之间。; 使用场景及目标:①在高维多特征数据场景中实现高精度分类预测;②解决传统LSSVM人工调参困难的问题,实现参数自动寻优;③构建可解释、可可视化、可部署的智能分类系统,支持金融、医疗、工业等领域的智能决策应用;④学习如何将智能优化算法(如BES)与经典机器学习模型(如LSSVM)融合并实现端到端项目开发。; 阅读建议:建议读者结合文中提供的完整代码进行实践操作,重点关注BES优化算法的实现逻辑、LSSVM的训练流程以及GUI界面的集成方式。在学习过程中,可尝试更换数据集、调整参数范围或引入其他优化算法进行对比实验,以深入理解模型性能变化机制。同时,建议关注项目部署与可扩展性设计,为后续工程化应用打下基础。
【源码免费下载链接】:https://renmaiwang.cn/s/yzxo9 在本项目中,我们深入研究了利用WPF构建登录界面的技术,并探讨了如何实现与 WinForms 主窗口之间的平滑切换效果。作为.NET Framework的一部分,WPF提供了丰富的用户界面设计功能;而 WinForm 是一个成熟的UI框架,在两者协同工作时可以充分发挥各自优势。为了创建登录页面,我们需要使用XAML来定义布局和控件,包括文本框、密码输入框以及按钮等基本元素。例如,在实现简单的登录界面时,我们可以将用户名、密码字段分别放置在两个文本框中,并通过一个按钮触发登录操作。具体的代码实现可以通过以下段落展示:```xml[此处应包含XAML代码片段]``` 在后台脚本部分,我们需要为按钮的点击事件编写逻辑来验证用户输入的安全性。例如,在上述示例中,我们假设已经存在名为 WinFormApp 的 WinForms 主界面类,并通过如下代码实现了功能:```csharp[此处应包含C#代码片段]``` 值得注意的是,WPF窗口可以与 WinForms 窗口实现交互切换,这种设计不仅提升了用户体验,还提供了良好的扩展性和可维护性。在实际开发过程中,建议将用户凭证存储在安全的位置,并采用数据绑定和 MVVM 模式来增强代码的可管理性。此外,在项目中我们巧妙地整合了两种UI设计框架,使得最终应用既具备美观界面又展现出强大功能。通过这种混合开发模式,我们可以快速构建出满足多种需求的应用程序。 为方便学习者深入研究,压缩包文件 TEST_WPF 登录打开 WinForm 主界面 中提供了一个完整的WPF与WinForm混合开发案例,其中详细展示了项目的实现过程和相关技术细节。
【源码免费下载链接】:https://renmaiwang.cn/s/8qqeb 本项目采用JavaWeb技术开发了一套健身俱乐部会员管理系统,旨在为管理员和俱乐部会员提供高效便捷的服务与管理工具。在深入理解该项目之前,我们首先需要掌握JavaWeb的基本概念及其在实际开发中的应用场景。JavaWeb是一种基于Java语言的动态网站和技术框架,它将灵活的Web开发特点与强大的类型安全性相结合,并提供了Servlet、JSP等核心技术组件作为基础架构。通过这些核心功能,管理员可以实现会员信息管理、课程安排、预约管理等功能:包括添加和修改会员资料、创建和编辑健身课程以及处理会员预约事务。此外,系统还支持详细的消费记录追踪和权限分配控制,确保不同角色用户拥有相应的操作权限。对于俱乐部会员而言,他们可以通过系统完成个人信息管理和课程预约等操作,并通过便捷的消费查询功能了解个人及团体的使用情况。项目包含的主要内容包括:1. 《说明.txt》:详细介绍了项目的安装要求、运行环境以及数据库配置等内容;2. 关注科帮网获取更多源码.url:提供了指向更多类似项目的资源链接;3. 运行截图:展示了系统界面和功能操作的具体示例图片;4. 数据库:包含了项目所需的数据库文件,包括SQL脚本或已导入数据内容;5. 健身俱乐部会员管理系统:该目录下包含了所有源代码文件,如Servlet、JSP、JavaBean等核心组件。要成功运行此项目,需要确保服务器支持JavaWeb技术,并将项目打包部署至相应服务器上。同时,还需要配置好数据库连接和导入项目中提供的数据库文件以实现系统的正常运行。通过深入学习和实践这个系统开发项目,不仅能够加深对JavaWeb技术的理解,还能掌握项目架构设计、数据库交互以及前后端交互等核心技能。
模拟几种数据融合协作频谱感知技术在认知无线电应用中性能研究(Matlab代码实现)内容概要:本文围绕“模拟几种数据融合协作频谱感知技术在认知无线电应用中的性能研究”展开,重点介绍了基于Matlab的多种信号处理与数据融合技术的实现方法,涵盖快速傅里叶变换(FFT)、窗函数法、希尔伯特-黄变换和小波变换等核心技术。文章通过Matlab代码实现,系统地对比和分析了不同数据融合策略在协作频谱感知中的检测性能,旨在提升认知无线电系统对频谱资源的感知能力与利用效率。此外,文档还列举了大量相关科研方向的Matlab/Simulink仿真案例,涉及电力系统、无人机路径规划、通信协议优化、信号去噪与故障诊断等领域,展示了Matlab在科研仿真中的广泛应用。; 适合人群:具备一定信号处理和通信系统基础知识,熟悉Matlab编程,从事电子信息、通信工程、自动化等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究认知无线电中协作频谱感知的数据融合算法性能;②掌握FFT、小波变换等信号处理技术在频谱感知中的应用;③利用Matlab进行科研仿真与算法验证,提升科研效率与创新能力; 阅读建议:建议结合文中提供的Matlab代码进行实践操作,深入理解算法实现细节,并参考文档末尾的丰富资源链接,拓展相关研究方向的技术视野。
神奇弹幕以直播间为平台,利用 AI 大模型、网络通信技术、音视频技术、智能控制技术将直播有关的功能集成,构建高效的现代化播出环境与观众互动的管理系统,提升直播亲密性、便利性、艺术性,并提供全方位的信息交互功能。通过网络化综合智能控制和管理,实现“以人为本”的全新直播体验。 整合弹幕姬+答谢姬+点歌姬+回复姬+多种大模型AI+工作流(workflow),支持弹幕聊天、观众互动与管理、数据统计与分析、自动点歌、私信处理、AI自动闲聊、AI直播建议等。最大的特点是可编程控制,像搭积木一样设置各种互动规则,打造专属直播风格! 本程序以打造自动化直播间为主线,以建设高粘性粉丝团体为目标,保持观众互动,实现粉丝裂变,打造直播高峰,做有温度的直播助手。与此同时,规范观众行为秩序,促进直播产业健康有序发展,营造清朗的网络环境。 神奇: 完全支持 AI 的直播工具,智能聊天、数据分析、粉丝档案 直播数据全部备份,永久保存到数据库,自定义筛选条件 主播秘书,一键上播下播、修改分区,直播数据收集与整理 根据约束条件(时间、等级、勋章等),按条件智能欢迎/答谢 外语自动翻译、AI闲聊回复、生僻字读音等自动化功能 粉丝变化、热门榜、大乱斗、船员变化、新人发言等种种数据 大乱斗查看双方串门的粉丝、同步视频PK对面消息、跑骚抓人 私信处理、感谢分享、最佳助攻、打卡回复、语音播报等 全自动点歌、弹幕切歌、自动暂停其它音乐、排队时长提示 点歌姬自动切换网易云/QQ/咪咕/酷狗,支持会员与本地导入 完全无人值守,远程控制,开播QQ群播报、自动录播 播放各音乐平台会员歌曲,没有版权的歌曲自动更换播放源 单个粉丝设置特别关心、强制提醒、专属昵称、永久禁言等 查看每名观众进来次数、礼物总计、弹幕记录、判断机器人等 弹幕语音播放与回复,百度/讯飞/微软语音等多个接口 小窗闲聊、迷
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值