win10安装Anaconda+Python+Cuda+cuDDN+Pytorch

本文档详细介绍了在Windows 10系统中,如何一步步安装Anaconda、CUDA 10.0、cuDNN 7.6.5以及PyTorch 1.1.0的过程。首先,确定所需Python和PyTorch版本,然后安装Anaconda,接着安装CUDA和配置环境变量,再安装cuDNN,并验证其功能。最后,通过conda或pip安装PyTorch,并验证安装成功。
摘要由CSDN通过智能技术生成

win10安装Anaconda+Python+Cuda+cuDDN

准备

首先确定自己需要的python版本和torch版本

例如:我需要使用python3.6torch1.1.0,电脑的操作系统Win10_64位,显卡驱动所支持cuda最大版本11.7(可通过升级驱动改变)。然后确定能否在pythonwhl文件pytorch官方网站找到所需要的包。从下面可以看出需要cuda网站下载安装cuda9.0或cuda10.0两个版本。从cuDNN下载网站确定cuDNN版本。最终我们选定下载python3.6、cuda10.0、torch1.1.0、cuDNN7.6.5、torchvision0.3.0。

介绍

环境版本
OSWin10_64
AnacondaAnaconda3(64-bit)
显卡NVIDIA GeForce GTX1060

1 安装Anaconda

  • Anaconda官网

    下载后点击exe文件开始安装

    一直下一步

    继续

    需要注意的是,若Anaconda的默认目录中(如C:\Users\yhily \ Anaconda3)事先安装有Anaconda的早期版本,或者说,同名的Anaconda文件夹不为空,则无法进行安装。这时解决的方法通常有两个:一是手动删除旧的安装目录,保障目前Anaconda安装路径的“纯洁性”;二是选择不同的安装目录,此外,还需要注意的是,安装路径一定不能有空格或中文字符

    测试是否安装成功:WIN+R打开运行窗口,输入

    cmd
    

    再按下回车

    输入命令:conda 回车

    conda
    

    输入命令:conda -V 回车

    conda -V
    


    ending!

新建环境

  • 安装后在开始菜单里有以下几个软件,我们点开Anaconda Prompt

  • 刚开始使用时,为了以后下载安装文件的速度快,进行一次添加下载源

  • 在上面窗口中输入下面conda代码

    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
    conda config --set show_channel_urls yes
    
    conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
    conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
    conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
    conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/msys2/
    conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/bioconda/
    conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/menpo/
    conda config --set show_channel_urls yes
    
  • 检查安装源是否成功添加

    conda config --show-source
    

  • 例如:新建一个环境名为my_pytorch100 python的版本为python3.6 默认安装地址~\anaconda3\envs

    conda create -n my_pytorch100 python=3.6
    

    -如果想要指定my_pytorch110安装路径:

    conda create --prefix=E:\anaconda3\envs\my_pytorch100 python=3.6
    

    输入上述指令回车

  • Y回车,等待安装

    新环境已经创建完成。

  • 检查新环境

    conda info -e
    

  • 激活新环境conda activate 环境名

    conda activate my_pytorch100
    

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BqOXGsGq-1658754670778)(C:\Users\admin\AppData\Roaming\Typora\typora-user-images\image-20220725205808709.png)]

  • 查看新环境已经装的包

    conda list
    

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ohvR1AHK-1658754670780)(C:\Users\admin\AppData\Roaming\Typora\typora-user-images\image-20220725205839429.png)]

2 安装CUDA

  • 查看显卡的所支持的cuda最高版本(可通过升级显卡驱动,来升级CUDA版本)

  • 此显卡驱动最高支持cuda11.7.99,本人选择安装cuda10.0
    Cuda软件下载网站

  • 以管理员身份运行

  • 点击OK

  • 等待安装

  • 检查系统兼容性

  • 点击同意并继续

  • 选择自定义

  • 点击下一步
    在这里插入图片描述

  • 新建一个文件夹用来存放cuda(也可以直接选择默认路径)

  • 点击下一步

  • 安装进行中(我等了几分钟)

  • 点击下一步

  • 点击关闭

  • 配置系统环境变量 右键我的电脑>>属性>>高级系统设置>>高级>>环境变量>>系统变量>>Path

  • 系统环境变量中已有

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\libnvvp
  • 手动添加
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\lib\x64
  • 检验是否安装成功

    Win + R,输入cmd打开Windows终端输入nvcc -V

    nvcc -V
    

  • 验证deviceQuery.exebandwidthTest.exe两个可执行程序是否能够正常运行

两程序路径C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\extras\demo_suite

win+r打开命令窗口, 输入cmd 回车,切换到目标目录下cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\extras\demo_suite

分别运行deviceQuery.exebandwidthTest.exe

3 安装cuDNN

  • 下载同一版本cuDNN,我是下载cuDNN7.6.5版本

  • 点击cuDNN7.6.5

  • 下载后发现其实cudnn不是一个exe文件,而是一个压缩包,解压后,有三个文件夹

  • 解压后,有三个文件夹

  • 把三个文件夹拷贝到cuda的安装目录下,替换目标文件

  • 验证deviceQuery.exebandwidthTest.exe两个可执行程序是否能够正常运行

    两程序路径C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\extras\demo_suite

    win+r打开命令窗口, 输入cmd 回车,切换到目标目录下cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\extras\demo_suite再输入bandwidthTest.exe

  • 再输入deviceQuery.exe

  • 安装成功

4 安装pytorch

pytorch官方网站

  • 方法一:直接找到想要的版本,使用里面的conda指令安装

或者

环境版本
oswin10*64
cuda10.0
python3.6
  • 想要下载torch1.1.0 所以选择cu100/torch-1.1.0-cp36-cp36m-win_amd64.whl

  • 进入新建的环境中

输入pip install whl文件地址

pip install D:\cu100/torch-1.1.0-cp36-cp36m-win_amd64.whl

等待…

验证安装

python
import torch
print(torch.__version__)
print(torch.cuda.is_available())

torch和torchvision对用应关系

torchtorchvisionpythoncuda
<=1.0.10.2.2==2.7, > =3.5, <=3.79.0 10.0
1.1.00.3.0==2.7, > =3.5, <=3.79.0 10.0
1.2.00.4.0==2.7, > =3.5, <=3.79.2 10.0
1.3.00.4.1==2.7, > =3.5, <=3.79.2 10.0
1.3.10.4.2==2.7, >=3.5, <=3.79.2 10.0
1.4.00.5.0==2.7, > =3.5, <=3.89.2 10.0
1.5.00.6.0>=3.59.2  10.1 10.2
1.5.10.6.1>=3.59.2 10.1 10.2
1.6.00.7.0>=3.69.2 10.1 10.2
1.7.00.8.0>=3.69.2  10.1 10.2 11.0
1.7.10.8.2>=3.69.2  10.1 10.2 11.0
1.8.00.9.0>=3.610.1 10.2 11.1
1.9.00.10.0>= 3.610.2 11.1 11.3
1.10.00.11.1>= 3.610.2 11.1 11.3
1.10.10.11.2>= 3.610.2 11.1 11.3
1.10.20.11.3>= 3.610.2 11.1 11.3

部分指令

功能命令
(base)创建环境conda create -n 环境名 python==ver
(base)创建环境conda create --prefix=E:\anaconda3\envs\my_pytorch100 python=3.6
(base)激活环境conda activate 环境名
查看已安装环境conda info -e
安装依赖pip install -r requirements.txt
安装依赖pip install -r D:\Project\requirement.txt
退出环境conda deactivate
安装包conda install pkg=ver
安装whlpip install whl的路径
查看已安装的包conda list
移除包conda remove pkg
销毁环境conda remove --name 环境名 --all
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值