win10安装Anaconda+Python+Cuda+cuDDN
准备
首先确定自己需要的python版本和torch版本
例如:我需要使用python3.6和torch1.1.0,电脑的操作系统Win10_64位,显卡驱动所支持cuda最大版本11.7(可通过升级驱动改变)。然后确定能否在pythonwhl文件和pytorch官方网站找到所需要的包。从下面可以看出需要cuda网站下载安装cuda9.0或cuda10.0两个版本。从cuDNN下载网站确定cuDNN版本。最终我们选定下载python3.6、cuda10.0、torch1.1.0、cuDNN7.6.5、torchvision0.3.0。


介绍
| 环境 | 版本 |
|---|---|
| OS | Win10_64 |
| Anaconda | Anaconda3(64-bit) |
| 显卡 | NVIDIA GeForce GTX1060 |
1 安装Anaconda
-
下载后点击exe文件开始安装

一直下一步

继续

需要注意的是,若Anaconda的默认目录中(如C:\Users\yhily \ Anaconda3)事先安装有Anaconda的早期版本,或者说,同名的Anaconda文件夹不为空,则无法进行安装。这时解决的方法通常有两个:一是手动删除旧的安装目录,保障目前Anaconda安装路径的“纯洁性”;二是选择不同的安装目录,此外,还需要注意的是,安装路径一定不能有空格或中文字符

测试是否安装成功:WIN+R打开运行窗口,输入
cmd再按下回车

输入命令:conda 回车
conda
输入命令:conda -V 回车
conda -V
ending!
新建环境
-
安装后在开始菜单里有以下几个软件,我们点开Anaconda Prompt

-
刚开始使用时,为了以后下载安装文件的速度快,进行一次添加下载源

-
在上面窗口中输入下面conda代码
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ conda config --set show_channel_urls yes conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/ conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/ conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/msys2/ conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/bioconda/ conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/menpo/ conda config --set show_channel_urls yes -
检查安装源是否成功添加
conda config --show-source
-
例如:新建一个环境名为
my_pytorch100python的版本为python3.6默认安装地址~\anaconda3\envsconda create -n my_pytorch100 python=3.6-如果想要指定
my_pytorch110安装路径:conda create --prefix=E:\anaconda3\envs\my_pytorch100 python=3.6输入上述指令回车

-
Y回车,等待安装

新环境已经创建完成。 -
检查新环境
conda info -e
-
激活新环境
conda activate 环境名conda activate my_pytorch100![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BqOXGsGq-1658754670778)(C:\Users\admin\AppData\Roaming\Typora\typora-user-images\image-20220725205808709.png)]](https://img-blog.csdnimg.cn/094a3f2673674b91af70f89edbf884c3.png#pic_center#)
-
查看新环境已经装的包
conda list![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ohvR1AHK-1658754670780)(C:\Users\admin\AppData\Roaming\Typora\typora-user-images\image-20220725205839429.png)]](https://img-blog.csdnimg.cn/0ca7228c275244448c44fa4f4ee42048.png#pic_center#)
2 安装CUDA
-
查看显卡的所支持的cuda最高版本(可通过升级显卡驱动,来升级CUDA版本)

-
此显卡驱动最高支持
cuda11.7.99,本人选择安装cuda10.0
Cuda软件下载网站


-
以管理员身份运行

-
点击OK

-
等待安装

-
检查系统兼容性

-
点击同意并继续

-
选择自定义

-
点击下一步

-
新建一个文件夹用来存放cuda(也可以直接选择默认路径)

-
点击下一步

-
安装进行中(我等了几分钟)

-
点击下一步

-
点击关闭

-
配置系统环境变量 右键我的电脑>>属性>>高级系统设置>>高级>>环境变量>>系统变量>>Path

-
系统环境变量中已有
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\libnvvp
- 手动添加
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\lib\x64
-
检验是否安装成功
Win + R,输入cmd打开Windows终端输入
nvcc -Vnvcc -V

- 验证
deviceQuery.exe与bandwidthTest.exe两个可执行程序是否能够正常运行
两程序路径C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\extras\demo_suite
win+r打开命令窗口, 输入cmd 回车,切换到目标目录下cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\extras\demo_suite

分别运行deviceQuery.exe与bandwidthTest.exe


3 安装cuDNN
- 下载同一版本cuDNN,我是下载cuDNN7.6.5版本

- 点击cuDNN7.6.5

-
下载后发现其实cudnn不是一个exe文件,而是一个压缩包,解压后,有三个文件夹

-
解压后,有三个文件夹

- 把三个文件夹拷贝到cuda的安装目录下,替换目标文件

-
验证
deviceQuery.exe与bandwidthTest.exe两个可执行程序是否能够正常运行两程序路径
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\extras\demo_suitewin+r打开命令窗口, 输入
cmd回车,切换到目标目录下cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\extras\demo_suite再输入bandwidthTest.exe

- 再输入
deviceQuery.exe

- 安装成功
4 安装pytorch
- 方法一:直接找到想要的版本,使用里面的conda指令安装

或者
- 方法二:pytorch的whl网站
- 选择需要的版本

| 环境 | 版本 |
|---|---|
| os | win10*64 |
| cuda | 10.0 |
| python | 3.6 |
- 想要下载torch1.1.0 所以选择
cu100/torch-1.1.0-cp36-cp36m-win_amd64.whl

- 进入新建的环境中

输入pip install whl文件地址
pip install D:\cu100/torch-1.1.0-cp36-cp36m-win_amd64.whl
等待…

验证安装
python
import torch
print(torch.__version__)
print(torch.cuda.is_available())

torch和torchvision对用应关系
| torch | torchvision | python | cuda |
|---|---|---|---|
| <=1.0.1 | 0.2.2 | ==2.7, > =3.5, <=3.7 | 9.0 10.0 |
| 1.1.0 | 0.3.0 | ==2.7, > =3.5, <=3.7 | 9.0 10.0 |
| 1.2.0 | 0.4.0 | ==2.7, > =3.5, <=3.7 | 9.2 10.0 |
| 1.3.0 | 0.4.1 | ==2.7, > =3.5, <=3.7 | 9.2 10.0 |
| 1.3.1 | 0.4.2 | ==2.7, >=3.5, <=3.7 | 9.2 10.0 |
| 1.4.0 | 0.5.0 | ==2.7, > =3.5, <=3.8 | 9.2 10.0 |
| 1.5.0 | 0.6.0 | >=3.5 | 9.2 10.1 10.2 |
| 1.5.1 | 0.6.1 | >=3.5 | 9.2 10.1 10.2 |
| 1.6.0 | 0.7.0 | >=3.6 | 9.2 10.1 10.2 |
| 1.7.0 | 0.8.0 | >=3.6 | 9.2 10.1 10.2 11.0 |
| 1.7.1 | 0.8.2 | >=3.6 | 9.2 10.1 10.2 11.0 |
| 1.8.0 | 0.9.0 | >=3.6 | 10.1 10.2 11.1 |
| 1.9.0 | 0.10.0 | >= 3.6 | 10.2 11.1 11.3 |
| 1.10.0 | 0.11.1 | >= 3.6 | 10.2 11.1 11.3 |
| 1.10.1 | 0.11.2 | >= 3.6 | 10.2 11.1 11.3 |
| 1.10.2 | 0.11.3 | >= 3.6 | 10.2 11.1 11.3 |
部分指令
| 功能 | 命令 |
|---|---|
| (base)创建环境 | conda create -n 环境名 python==ver |
| (base)创建环境 | conda create --prefix=E:\anaconda3\envs\my_pytorch100 python=3.6 |
| (base)激活环境 | conda activate 环境名 |
| 查看已安装环境 | conda info -e |
| 安装依赖 | pip install -r requirements.txt |
| 安装依赖 | pip install -r D:\Project\requirement.txt |
| 退出环境 | conda deactivate |
| 安装包 | conda install pkg=ver |
| 安装whl | pip install whl的路径 |
| 查看已安装的包 | conda list |
| 移除包 | conda remove pkg |
| 销毁环境 | conda remove --name 环境名 --all |
本文档详细介绍了在Windows 10系统中,如何一步步安装Anaconda、CUDA 10.0、cuDNN 7.6.5以及PyTorch 1.1.0的过程。首先,确定所需Python和PyTorch版本,然后安装Anaconda,接着安装CUDA和配置环境变量,再安装cuDNN,并验证其功能。最后,通过conda或pip安装PyTorch,并验证安装成功。

2万+

被折叠的 条评论
为什么被折叠?



