混淆矩阵
概念
当说到召回率的时候就说到了混淆矩阵。
再回顾一下召回率吧,案例中有100个正例,猜中(预测对)了59个,我们就说召回率为59%。
召回率就是猜中率。
当时也讲到,正例和反例,加上猜中和猜错,总共有四种情况
猜中true | 猜错false | |
正例positive | TP | FP |
反例negative | TN | FT |
所谓召回率,仅仅是其中的四分之一。在条件允许(资本充足)的情况下,我们关心的,也是实际有用的,的确是召回率。
但是实际条件并不允许我们这么单一,现实对我们的要求不仅是增加猜中的概率,也需要降低猜错的概率。
同时,关键的一个隐蔽点,在于数量的限制,50个男生,50个女生,我猜全部是男生,就会发现这种奇葩情况:
召回率100%,但是其他分布惨不忍睹。
隐藏的,就是可以猜的个数。
当然,我们可以把猜的个数做一个限制,但是这只是在已知的情境下才有具体的作用,位置的情况下,谁也说不准100个人中到底有多少个男生,多少个女生,可取的范围的确是[0,100]。
综上所述,对于一个模型的评估,所谓的召回率只能是在其他情况下都"不太差"的情况下才有对比的意义,或者说是只在乎"召回率",也就是错杀一千也不放过一个,不在乎浪费和消耗的情况下才有追逐的价值。
普遍的情况,追求的当然是全面,用最少的资源做最多的事情。也就是说,我们需要对样本的分布和预测的分布进行综合的考量,从各方面对模型进行评估和约束,才能够达到预期的目标。
而上面的2*2的分布表格,就是我们所谓的混淆矩阵。
当样本分布为3类的时候,猜测也为3类
0 | 1 |