混淆矩阵及绘图

混淆矩阵

概念

    当说到召回率的时候就说到了混淆矩阵。

    再回顾一下召回率吧,案例中有100个正例,猜中(预测对)了59个,我们就说召回率为59%。

    召回率就是猜中率。

    当时也讲到,正例和反例,加上猜中和猜错,总共有四种情况

  猜中true 猜错false
正例positive TP FP
反例negative TN FT

    所谓召回率,仅仅是其中的四分之一。在条件允许(资本充足)的情况下,我们关心的,也是实际有用的,的确是召回率。

    但是实际条件并不允许我们这么单一,现实对我们的要求不仅是增加猜中的概率,也需要降低猜错的概率。

    同时,关键的一个隐蔽点,在于数量的限制,50个男生,50个女生,我猜全部是男生,就会发现这种奇葩情况:

    召回率100%,但是其他分布惨不忍睹。

    隐藏的,就是可以猜的个数。

    当然,我们可以把猜的个数做一个限制,但是这只是在已知的情境下才有具体的作用,位置的情况下,谁也说不准100个人中到底有多少个男生,多少个女生,可取的范围的确是[0,100]。

    综上所述,对于一个模型的评估,所谓的召回率只能是在其他情况下都"不太差"的情况下才有对比的意义,或者说是只在乎"召回率",也就是错杀一千也不放过一个,不在乎浪费和消耗的情况下才有追逐的价值。

    普遍的情况,追求的当然是全面,用最少的资源做最多的事情。也就是说,我们需要对样本的分布和预测的分布进行综合的考量,从各方面对模型进行评估和约束,才能够达到预期的目标。

    而上面的2*2的分布表格,就是我们所谓的混淆矩阵。

    当样本分布为3类的时候,猜测也为3类

  0 1
评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值