题意:(来自lee+的翻译)
题目意思是说,有几种不同的珍珠。每种珍珠都有它的单价。当然质量高的珍珠价格一定也是高的。
为了避免买家只买1个珍珠。就要求不论是买了多少个珍珠都是需要在购买数量上加10.之后乘上单价。
求出总的花费!例如:买5个单价是10的珍珠。需要的花费是(5+10)*10= 150.买100个单价是20的珍珠
需要的花费是(100+10)*20= 2200.总共需要的花费是150+2200=2350.如果把珍珠的质量提高了。需要的105个
珍珠都买单价是20的。也就是说都买质量好的。总的花费是(5+100+10)*20= 2300.在两组数据看来。珍珠都
买了高品质的了,而且花费也少了!
问题是怎么样能花费最少买珍珠!
输入,第一个是有多少测试数据
第二个,N个,
下面N行,第一个数是珍珠个数,第二个数是珍珠单价,
样例1 (100+10)*1 + (100+10) *2 = 330;
思路:
dp[i][j] 表示 目前需要处理i~n种珠子, 最低的珠子单价是第j种价格.
1.不选取第j种珠子的价格
dp[i][j] = dp[i][j+1]
2.选取第j种珠子的价格
dp[i][j] = dp[j+1][j+1] + (tot+10) * price[j] (tot表示从第i种到第j种珠子使用 第j种珠子的价格所需要的代价)
代码:
#include <cstring> #include <stdio.h> #include <iostream> using namespace std; int Case,n; const int maxn = 155; int nums[maxn]; int price[maxn]; int sum[maxn]; int dp[maxn][maxn]; int gettot(int beg,int end) { int ret = 0; for(int i=beg;i<=end;i++) { ret += nums[i]; } return ret; } int main() { scanf("%d",&Case); while(Case --) { scanf("%d",&n); memset(sum,0,sizeof(sum)); for(int i=1;i<=n;i++) { scanf("%d%d",&nums[i],&price[i]); sum[i] = sum[i-1] + nums[i]; } memset(dp,0x3f,sizeof(dp)); dp[n+1][n] = 10 * price[n]; for(int i=n;i>=1;i--) { dp[i][n] = dp[i+1][n] + nums[i] * price[n]; } for(int i=n;i>=1;i--) { for(int j=n-1;j>=i;j--) { dp[i][j] = min(dp[i][j+1],dp[j+1][j+1] + (gettot(i,j) + 10) * price[j]); } } printf("%d\n",dp[1][1]); } }