- 博客(39)
- 收藏
- 关注
原创 基于物理约束和谱归一化贝叶斯深度学习的机械不确定性量化退化预测算法(Python)
摘要:该研究提出了一种融合多模态不确定性量化方法的机械退化预测算法,结合谱归一化、高斯过程和证据深度学习,同时捕捉数据噪声和模型认知不确定性。算法创新性地引入物理退化模型约束的贝叶斯推理框架,通过自适应权重平衡不确定性贡献,并采用谱归一化层增强鲁棒性。实验验证了算法在消融测试、域适应置信度评估及对抗噪声下的优异表现,为机械系统退化预测提供了可靠的不确定性量化解决方案。
2026-01-18 11:52:29
749
原创 基于物理引导和不确定性量化的轻量化神经网络机械退化预测算法(Python)
摘要:本文提出一种融合物理模型与深度学习的机械退化预测算法。通过提取振动信号时频域特征,结合运行时间、温度等变量构建输入向量,并加载预训练的多架构神经网络模型(CFC、LTC等)。算法创新性地将Arrhenius寿命方程作为物理约束嵌入网络训练,采用动态权重平衡数据拟合与物理约束损失。实验验证表明,该方法在域内泛化、跨数据集迁移、噪声鲁棒性等方面表现优异,并能有效量化预测不确定性。该算法具有物理引导、动态加权、多源不确定性量化等特性,可实现零样本跨域迁移预测。
2026-01-18 10:48:35
828
原创 基于卷积特征提取和液态神经网络的航空发动机剩余使用寿命预测算法(python)
本文实现了一个基于混合神经网络的航空发动机剩余使用寿命(RUL)预测系统。系统采用NASAC-MAPSS数据集,通过数据预处理(去除静态传感器、特征归一化和序列化)后,构建了CNN-LNN混合模型:CNN提取传感器数据的局部特征,LNN建模时序动态特性。训练采用滑动窗口技术和Adam优化器,测试阶段对发动机最后运行序列进行预测,并使用RMSE和C-MAPSS评分评估性能。该系统实现了从数据加载到预测评估的完整流程,为航空发动机健康管理提供了有效解决方案。
2026-01-17 11:32:38
1036
原创 基于多分辨率注意力脉冲神经网络的机械振动信号故障诊断算法(Pytorch)
本文提出了一种基于多分辨率注意力脉冲神经网络的轴承故障诊断算法。该方法首先通过滑动窗口对振动信号进行分割,采用3种不同尺度的卷积核并行提取多分辨率特征。算法核心是引入注意力机制的脉冲神经元,模拟生物神经元的膜电位动态过程,将连续信号转换为脉冲序列。通过高效通道注意力模块和残差连接的注意力脉冲基础块进行深层特征提取,最后整合时间步信息实现分类。实验结果表明该算法能有效提取振动信号特征,实现精确故障诊断。
2026-01-16 23:04:38
858
原创 基于注意力机制的多尺度脉冲神经网络旋转机械故障诊断(Pytorch)
本文提出了一种基于多尺度特征提取和注意力脉冲神经网络的轴承故障诊断方法。首先对西储大学轴承数据集中的振动信号进行滑动窗口分割,构建训练集和测试集。模型采用多尺度卷积层提取特征,结合注意力机制动态调整特征权重,通过脉冲神经元模拟生物神经元的脉冲发放过程。训练阶段使用Adam优化器和早停机制,在测试集上达到99.6%的准确率,仅1个样本误分类。实验结果表明,该方法能有效识别轴承正常状态和三种故障类型(滚珠、内圈、外圈故障),为工业设备状态监测提供了可靠解决方案。
2026-01-16 22:42:52
678
原创 基于物理约束指数退化与Hertz接触理论的滚动轴承智能退化趋势分析(Pytorch)
本文提出了一种融合物理模型与数据驱动的轴承寿命预测方法。算法首先提取振动信号的RMS和最大值特征,确定故障起始点;然后基于Hertz接触理论构建包含接触力、缺陷增长和振动方程的物理模型;设计物理约束的指数退化神经网络,在损失函数中引入物理一致性约束;使用故障起始后的历史数据训练模型,预测振动特征演化趋势,当超过故障阈值时计算剩余寿命。实验结果显示,三个轴承的预测误差分别为7、8和11个时间单位,平均绝对误差8.67,准确率均超过99%,验证了该方法的有效性。
2026-01-15 11:56:20
809
原创 基于多物理约束融合与故障特征频率建模的滚动轴承智能退化趋势分析(Pytorch)
本文提出了一种融合物理机理与数据驱动的滚动轴承智能退化分析方法。通过提取振动信号的RMS和最大值特征确定故障起始点,构建包含赫兹接触理论、缺陷增长动力学和故障特征频率计算的多物理约束模型,设计指数退化神经网络并引入多目标优化框架。实验结果表明,该方法能准确预测轴承退化趋势,误差控制在7-8个时间单位内,准确率达99.47%-99.75%。算法通过物理约束确保预测结果既符合数据规律又满足轴承故障机理,为设备预测性维护提供了可靠决策支持。
2026-01-15 11:50:17
871
原创 基于多分辨率注意力脉冲神经网络的机械振动信号故障诊断算法(西储大学轴承数据,Pytorch)
本文提出一种基于多尺度卷积和注意力脉冲神经网络的轴承故障诊断算法。算法采用三分支并行结构,分别使用3×3、5×5、7×7卷积核进行多尺度特征提取,通过注意力脉冲神经元实现生物神经元的膜电位动态模拟。特征融合后经通道注意力模块重校准,再通过两个注意力脉冲基础块进行深层特征提取,最终输出分类结果。实验显示该方法在训练集和验证集均达到100%准确率,损失降至0.0000级别。算法创新性地结合了多尺度特征提取、脉冲神经网络和注意力机制,为轴承故障诊断提供了新思路。
2026-01-14 11:28:38
665
原创 基于注意力机制的多尺度脉冲神经网络旋转机械故障诊断(西储大学轴承数据,Pytorch)
本文提出了一种基于脉冲神经网络(SNN)的轴承故障诊断方法。该方法首先对西储大学轴承数据集进行滑动窗口分割,构建包含多尺度特征提取器和注意力脉冲神经元的SNN模型。通过带梯度裁剪的Adam优化器和早停机制进行训练,最终在测试集上达到99.6%的准确率,仅1个样本误分类。实验结果表明,该方法在内圈和外圈故障检测上均实现100%的精确率和召回率,滚珠故障召回率为97.4%,正常状态精确率为99.2%。该方法具有训练速度快(16个epoch收敛)、分类性能优异等特点,为工业设备状态监测提供了有效的解决方案。
2026-01-14 11:26:33
709
原创 基于梯度下降的自适应正交小波滤波器优化算法(Python)
本文提出了一种基于梯度下降的自适应小波学习算法。该算法通过随机初始化小波滤波器系数,采用迭代优化过程自动学习最优的小波变换。核心流程包括:信号分解与重构、损失计算(含重建误差、稀疏性和正交性约束)、数值微分梯度计算以及梯度下降参数更新。算法最终输出优化后的小波滤波器,适用于信号处理任务。实验采用Python实现,结合PyWavelets库构建自定义小波变换器,通过标准化数据和可视化分析验证算法有效性。
2026-01-13 07:47:15
360
原创 基于数据驱动的自适应正交小波基优化算法(Python)
本文提出了一种数据驱动的自适应正交小波基优化算法。该方法首先生成高斯白噪声数据集并初始化5级小波分解结构,通过参数化滤波器组(使用角度参数γ和θ)表示正交小波滤波器。算法采用L-BFGS优化方法最小化投影能量和方差惩罚项,实现从粗到细的逐层优化,每层优化后衰减惩罚因子。优化后的自适应小波基通过DWT变换和IDWT重构实现信号分析,相比传统固定小波基能更好地匹配输入数据特性。实验结果显示,该方法在信号处理和特征提取方面具有优势,并通过可视化展示优化后的小波函数。
2026-01-13 07:44:02
514
原创 基于物理信息嵌入与多维度约束的深度学习地基承载力智能预测与可解释性评估算法(以模拟信号为例,Pytorch)
本文提出了一种基于深度学习的土木工程承载力预测框架。该框架首先通过Terzaghi理论公式生成合成数据集,并引入随机噪声模拟工程不确定性;随后进行数据标准化和特征工程处理,构建包含批量归一化和Dropout层的深度神经网络模型。创新性地设计了包含物理约束的复合损失函数,确保预测结果符合工程常识。训练过程采用AdamW优化器和余弦退火学习率策略,最终通过多种性能指标和可视化分析验证模型的有效性。该方法不仅实现了高精度预测,还通过领域知识嵌入保证了结果的物理合理性,为工程实践提供了可靠的数据驱动工具。
2026-01-12 11:10:46
694
原创 基于高阶统计量引导的小波自适应块阈值地震信号降噪算法(MATLAB)
本文提出了一种自适应地震信号降噪算法,通过高阶统计量自动检测信号到达时间,采用多尺度噪声估计和尺度相关块阈值策略实现高效降噪。算法首先进行小波变换分解信号,利用信号前段的纯噪声估计各尺度统计特性,然后设计混合阈值函数对系数进行自适应处理,最后重构信号并评估效果。创新点包括自动信号检测、多尺度噪声估计和混合阈值设计,在保留有效信号细节的同时有效去除噪声,适用于非平稳地震信号处理。
2026-01-12 11:07:21
441
原创 基于物理约束与多源知识融合的浅基础极限承载力智能预测与工程决策优化(以模拟信号为例,Pytorch)
本文提出了一种基于深度学习的土体承载力预测模型,通过结合经典理论公式与工程经验构建训练数据集。系统采用物理信息约束的神经网络架构,强制模型满足承载力随土体参数单调递增等物理规律,并设计混合损失函数平衡训练稳定性。实验表明,该方法相比传统公式具有更高精度,同时保持了工程合理性。模型提供完整的预测接口和安全系数建议,实现了从数据生成到工程应用的闭环系统。
2026-01-11 08:48:00
751
原创 基于多模态特征融合和可解释性深度学习的工业压缩机异常分类与预测性维护智能诊断(Python)
本文提出了一种基于多模态深度学习的工业设备振动信号可视化分析方法。该方法通过SHAP特征重要性解释和注意力机制可视化,实现了模型决策依据的直观展示。系统首先加载原始振动数据、模型预测结果和SHAP值,然后进行时域对齐预处理。通过将SHAP重要性值以红色渐变背景叠加在时域波形图上,直观显示关键时间点;同时展示STFT频域特征的SHAP热力图和注意力图,揭示模型在频域和时间维度的关注重点。该方法支持五种振动模式(正常+四种异常)的并行处理,生成高分辨率可视化结果,为设备状态监测和故障诊断提供了有效的可解释性分析
2026-01-11 08:34:08
421
原创 基于多尺度特征提取和注意力自适应动态路由胶囊网络的工业轴承故障诊断算法(Pytorch)
本文提出一种基于多尺度特征提取和注意力动态路由胶囊网络的轴承故障诊断方法。首先对西储大学轴承数据集进行预处理,将振动信号分割为1024采样点的标准化样本,并分层划分数据集。构建多尺度卷积网络提取不同频段特征,通过胶囊网络将特征向量化并引入注意力机制动态加权。采用简化的动态路由算法聚合胶囊特征,最终实现四类轴承状态的精确分类。实验表明,该方法能有效融合信号的时频特征,通过注意力机制聚焦关键故障信息,在独立测试集上取得高精度诊断效果。
2026-01-10 21:51:08
1142
原创 基于生成对抗U-Net混合架构的隧道衬砌缺陷地质雷达数据智能反演与成像方法(以模拟信号为例,Pytorch)
本文提出了一种基于生成对抗网络(GAN)与U-Net混合架构的隧道衬砌缺陷地质雷达数据智能反演方法。首先通过物理模型模拟生成带有随机缺陷的地质雷达信号数据集,包含界面反射、缺陷反射及噪声。然后构建U-Net作为生成器、CNN作为判别器的混合网络,采用对抗损失与L1重建损失相结合的优化策略进行训练。实验结果表明,该方法能有效从雷达信号中反演出缺陷分布,并通过量化指标(MSE、MAE、PSNR)和可视化对比验证了模型性能。最终训练好的模型可作为智能反演工具应用于实际工程检测。
2026-01-09 15:58:25
686
原创 基于多尺度特征提取和注意力自适应动态路由胶囊网络的工业轴承故障诊断算法(Pytorch)
本文提出一种基于多尺度特征提取和注意力自适应动态路由胶囊网络的轴承故障诊断方法。首先对西储大学轴承数据集进行专业预处理,将振动信号分割为1024采样点的标准化样本。然后构建多尺度卷积网络,通过64、32、16三种卷积核并行提取时频特征,并融合形成统一表示。在胶囊网络阶段,引入注意力机制评估初级胶囊重要性,通过动态路由生成故障类别胶囊。实验采用交叉熵损失函数和早停机制优化训练,最终在独立测试集上实现高精度故障分类。该方法有效结合了多尺度特征提取和胶囊网络的优势,为轴承故障诊断提供了新思路。
2026-01-09 15:55:09
1270
原创 基于自适应多尺度小波核编码与注意力增强的脉冲神经网络机械故障诊断(Pytorch)
本文提出了一种基于自适应多尺度小波核编码和脉冲神经网络的轴承故障诊断方法。该方法首先对振动信号进行标准化处理和滑动窗口分段,然后采用24个可学习参数的小波核进行多尺度时频特征提取。通过改进的积分-发放脉冲神经元实现稀疏编码,构建三级卷积网络进行特征提取,并引入通道注意力机制。训练过程中采用数据增强、标签平滑等技术,最终在测试集上达到了100%的准确率。该方法通过自适应优化的小波核和脉冲神经网络,有效提升了轴承故障诊断性能,为工业设备预测性维护提供了可靠的技术支持。
2026-01-08 09:22:38
1181
原创 基于多尺度注意力机制融合连续小波变换与原型网络的滚动轴承小样本故障诊断方法(Pytorch)
本文提出了一种基于多尺度注意力小波原型网络的滚动轴承小样本故障诊断方法。通过传感器采集振动信号,采用滑动窗口分割和标准化预处理数据。模型采用三个不同尺度的连续小波卷积层并行提取特征,结合SE和CBAM注意力机制增强关键特征。在小样本学习框架下,通过计算类别原型和查询样本的距离进行分类。实验表明,该方法在1-shot情况下准确率达99.26%,5-shot达100%,且在强噪声环境下仍保持良好性能,验证了其在数据稀缺场景下的实用价值。
2026-01-08 09:18:15
735
原创 面向可信机械故障诊断的自适应置信度惩罚深度校准算法(Pytorch)
本文提出一种面向机械故障诊断的自适应置信度惩罚深度校准算法。该方法基于一维ResNet-18网络,创新性地采用自适应置信度惩罚(AdaCP)损失函数,通过动态调整不同置信区间的惩罚系数,有效平衡分类准确率与置信度校准质量。实验表明,该方法在轴承故障数据集上实现接近100%的分类准确率,同时保持极低的期望校准误差(ECE=0.0000),证明其不仅能准确分类,还能提供可靠的置信度估计。算法通过可视化分析展示了各置信区间惩罚系数的自适应调整过程,为建立可信机械故障诊断系统提供了新思路。
2026-01-07 12:23:28
887
原创 基于故障频率先验引导与多特性约束的谱幅融合可解释健康指数自适应构建与退化评估方法(Python)
该研究提出了一种基于频谱幅值优化的可解释健康指数构建方法,用于装备状态监测与故障诊断。算法通过信号预处理、包络谱分析、理论故障频率计算和多策略权重优化,生成区分度达0.7504的健康指数,能准确聚焦轴承内圈(误差0.5Hz)、外圈等故障特征频率。优化后的健康指数实现100%故障检测率和仅5%误报率,并通过多维可视化完整呈现从原始数据到可解释评估的全流程。该方法在《Mechanical Systems and Signal Processing》等期刊审稿中展现出在信号处理与故障诊断领域的实用价值。
2026-01-07 12:18:49
769
原创 基于多频带谱幅自适应加权融合与凸优化理论的装备全生命周期可解释退化评估广义健康指数智能构建算法(Python)
本文提出了一种基于谱幅融合的装备退化评估优化模型,通过信号分段处理、频域特征提取和凸优化建模实现健康指数的智能构建。模型采用多种优化策略:可分性模型(得分406.5)突出故障检测能力,可分性+单调性模型(得分1574.4/0.6387)兼顾阶段区分与趋势保持,稀疏性模型自动定位故障特征频率(如105.5Hz),信噪比模型实现综合性能优化。实验使用西储大学轴承数据,通过可视化健康指数曲线和权重分布验证了模型在早期故障检测(高频权重1066.4Hz)、退化趋势预测和故障特征识别(低频105.5Hz)的有效性,为
2026-01-06 08:33:13
728
原创 基于多分辨率特征融合与双重注意力机制的振动信号时频图像孪生网络机械故障诊断方法(Pytorch)
本文提出了一种基于多分辨率孪生网络的轴承故障诊断方法。首先对西储大学轴承振动信号进行短时傅里叶变换生成时频图像,并通过数据增强将样本扩充至1884个。构建的多分辨率卷积融合网络结合膨胀卷积和标准卷积提取多尺度特征,并引入双重注意力机制强化关键特征。采用孪生网络架构和对比损失进行训练,使同类样本特征相近而异类样本特征远离。最终使用K近邻分类器实现故障诊断,测试准确率达100%,优于现有方法。该系统实现了从原始信号到故障诊断的端到端智能处理,在各类故障上均表现优异。
2026-01-06 08:29:29
820
原创 基于S变换时频物理可解释性的自适应卷积神经网络机械故障诊断算法(Pytorch)
本文提出了一种基于S变换卷积神经网络(STNN)的轴承故障诊断方法。算法首先对西储大学轴承振动信号进行分割和标准化预处理,然后构建具有物理意义的S变换卷积层,通过可训练频率参数生成时频分析核函数。随后连接标准CNN结构提取高级特征,最终实现故障分类。模型在测试集上仅3个epoch即达到100%准确率,并保持稳定。创新性地将S变换数学原理嵌入深度学习框架,通过可视化核函数、特征图和t-SNE降维等技术增强模型可解释性,为故障诊断提供了兼具高精度和物理可解释性的解决方案。
2026-01-05 07:37:50
967
原创 基于模糊隶属度与最优间隔分布的低秩矩阵分类器(Python)
本文提出一种基于模糊隶属度和最优间隔分布的低秩矩阵分类方法用于轴承故障诊断。首先通过STFT将振动信号转换为时频矩阵,计算样本到类中心的距离动态分配模糊隶属度以降低异常值影响。模型采用间隔分布损失和核范数正则化的复合目标函数,结合Adam优化器进行训练。实验表明,该方法在STFT特征下实现100%分类准确率,在40%标签噪声下仍保持92.5%准确率,表现出优异的分类性能和抗噪能力。
2026-01-05 07:31:54
672
原创 基于频域解耦与低秩近似的机械振动信号相位无关型二维特征表征算法(Python)
本文提出一种将一维振动信号转换为相位无关二维特征矩阵的方法。通过快速傅里叶变换转换到频域,提取正频率复数序列并分离实虚部构建二维矩阵。经去中心化、协方差分析和特征值分解实现实虚部解耦,消除线性相关性。利用解耦后复数序列构建格拉姆矩阵记录内积关系,再通过奇异值分解进行低秩近似截断,保留主要特征形成FRGM特征矩阵。该方法消除了相位影响,实现不同长度信号在特征空间的一致性表示,为深度学习提供稳定的二维输入特征。
2026-01-04 09:27:03
354
原创 基于自适应物理信息神经网络PINN和多尺度特征融合的滚动轴承退化趋势预测(Pytorch)
摘要:本文提出了一种基于物理信息神经网络(PINN)的轴承退化趋势预测方法。通过提取时域统计特征、频域特征和时频域小波变换特征构建多尺度特征表征,结合数据驱动学习和物理规律约束(单调性、平滑性等),采用自适应权重机制平衡数据拟合与物理约束损失。实验结果显示该方法预测精度高,三个轴承平均误差仅5.67个时间步长,在99%寿命处能准确判定故障状态。关键创新点包括:多尺度特征融合、物理约束融入、Huber损失函数和动态训练策略,为设备健康管理提供了可靠预测工具。
2026-01-04 09:08:13
746
原创 基于辛几何时频特征提取和双加权不平衡矩阵分类的机械故障诊断方法(Python)
本文提出了一种基于辛几何特征和双加权矩阵分类的机械故障诊断方法。系统通过改进的辛几何变换提取振动信号的时频特征,结合PCA降维处理。针对类别不平衡问题,设计了双加权不平衡矩阵分类器(TWIMC),采用一对一策略构建多个二分类器,融入低秩约束和自适应优化。实验结果表明,该方法在多种不平衡配置下均能保持99%以上的准确率和召回率,对少数类样本识别效果显著。系统实现了从信号处理、特征提取到模型优化的完整故障诊断流程,具有较强的工程实用价值。
2026-01-03 14:26:58
1170
原创 基于动态记忆策略与自适应权值校正的小样本多增量机械故障诊断算法(Pytorch)
本文提出一种基于增量学习的机械故障诊断算法。该算法采用滑动窗口分割振动信号,通过深度残差网络提取特征,并引入自适应样例库保存代表性样本。创新性地采用权值动态校正技术,根据类别学习难度调整损失权重,平衡新旧知识学习。实验表明,该算法在逐步引入新故障类型时保持100%准确率,有效解决了类别不平衡问题,避免了灾难性遗忘。通过知识蒸馏和动态样例库更新,算法兼具新知识学习能力和旧知识保持能力,为实际工程中的渐进式故障诊断提供了有效解决方案。
2026-01-03 13:47:20
740
原创 基于多元提升核自适应多小波卷积神经网络的机械故障诊断与特征提取可解释性分析算法(Pytorch)
该研究提出了一种基于多元提升核神经网络的机械故障诊断方法。算法采用自适应提升多小波层作为核心特征提取器,通过三层结构化卷积运算实现信号分解与特征提取。网络架构包含卷积层、池化层和全连接层,采用交叉熵损失和Adam优化器进行训练。实验结果显示,该模型在西储大学轴承数据集上实现了100%的测试准确率,训练速度快(总耗时5.87秒),参数调整合理。但研究也指出样本量较小、过拟合风险等潜在问题,建议在实际工业数据上进一步验证。该算法为机械故障诊断提供了高效解决方案,兼具理论创新性和工程应用价值。
2026-01-02 10:08:11
1027
原创 基于辛几何流形学习和最优传输理论的多尺度小波特征融合机械故障诊断方法(Python)
本文提出了一种融合多尺度小波变换与辛几何相空间重构的轴承故障诊断方法。该方法通过多尺度小波分解提取时频特征,并创新性地采用辛几何理论重构相空间以保持动力学特性,结合最优传输理论构建特征相似性度量。实验结果表明,该方法在824个样本的数据集上实现了100%的分类准确率,验证了其有效性。
2026-01-02 10:03:22
926
原创 基于仿射不变性-复流形结构-芬斯勒度量-子流形嵌入四维几何融合的机械故障诊断方法(Python)
本文提出一种基于多几何融合的轴承故障诊断方法,通过仿射几何、复流形、芬斯勒几何和子流形几何四个维度提取信号特征。系统首先对振动信号进行预处理,然后分别计算仿射不变量矩、复数域特征、方向相关度量和流形几何特征,最终融合60维特征输入梯度提升树分类器。实验表明,该方法在四种轴承状态分类上达到100%准确率,验证了多几何融合策略的有效性。文章详细阐述了特征提取算法流程,包括仿射不变量矩计算、复数小波变换、芬斯勒度量分析和相空间重构等关键技术。
2026-01-01 11:10:29
1065
原创 基于高维几何流形学习和最优传输理论融合的机械故障诊断方法(Python)
本文提出了一种融合谱几何、曲率流、李群理论等五大几何方法的振动信号分析算法,构建了多维几何表征体系。该算法在轴承故障诊断中实现了100%的分类精度,特征分析显示前13维特征可解释90%的分类贡献。系统包含完整的预处理、特征提取、分类和可视化流程,具有扩展到其他旋转机械故障诊断的潜力。算法创新性地将几何方法与黎曼流形分析相结合,为故障诊断提供了新的方法论框架,其可视化分析模块也满足了顶级期刊对结果可解释性的要求。
2026-01-01 11:07:25
767
原创 基于自适应物理信息神经网络PINN和多尺度特征融合的滚动轴承退化趋势预测(Pytorch)
本文提出一种融合物理信息神经网络与多尺度特征工程的轴承退化预测方法,实现0.2%-0.7%的超高预测精度。该方法创新性地将数据驱动模型与物理退化规律深度融合,通过自适应损失平衡和贝叶斯不确定性量化,不仅具备优异预测性能,还具有强解释性和泛化能力。系统完整覆盖"特征提取-物理建模-不确定性分析-可视验证"全流程,采用时域统计、频域能量及时频小波等多尺度特征,通过标准化处理、复合损失函数设计和优化训练策略,在三个轴承测试中平均误差仅5.67个时间步长,特别在99%寿命点能准确判断故障状态。该
2025-12-31 09:04:21
666
原创 基于微分几何特征和黎曼流形图嵌入的多尺度几何结构特征融合的机械故障诊断(Python)
本文提出了一种融合微分几何特征和黎曼流形图嵌入的轴承故障诊断方法。首先对振动信号进行预处理,包括去直流、标准化和分段处理。然后采用两路并行特征提取:一路通过微分几何方法提取曲率、挠率等局部几何特征;另一路通过相空间重构和黎曼流形分析提取全局几何特征。两路特征经标准化和降维后融合,输入随机森林分类器实现四类轴承状态(正常、滚珠故障、外圈故障、内圈故障)的分类。实验结果表明,该方法能有效提取信号的多尺度几何结构特征,实现高精度故障诊断。算法流程包括数据加载、特征提取、特征融合和分类识别四个主要模块。
2025-12-31 08:56:35
1551
原创 基于黎曼几何正则化物理信息神经网络的滚动轴承退化趋势预测(Pytorch)
摘要:本文提出一种基于多尺度特征提取和轻量级物理信息神经网络的轴承剩余寿命预测方法。通过提取时域、时频域和频域特征构建高维特征空间,设计包含黎曼几何正则化和物理约束的轻量级神经网络架构。该方法采用自适应权重平衡策略优化复合损失函数,通过逐步前向预测模拟退化轨迹,实现轴承剩余使用寿命的准确预测。实验结果表明,该方法能有效保持数据流形结构并满足物理规律约束,为工业设备健康管理提供可靠决策支持。
2025-12-30 07:46:39
1323
原创 基于图拉普拉斯正则化物理信息神经网络的工业装备退化趋势预测方法(Pytorch)
本文提出一种基于图拉普拉斯正则化物理信息神经网络的工业装备退化预测方法。首先对轴承振动信号进行多尺度特征提取,构建高维特征向量;然后设计融合图拉普拉斯正则化机制和物理先验约束的神经网络模型,通过复合损失函数优化训练;最后采用递归预测策略生成退化轨迹并计算剩余使用寿命。该方法通过保持数据局部几何特性和嵌入物理规律约束,实现了更准确的退化趋势预测,为设备健康管理提供决策支持。
2025-12-30 07:37:41
765
转载 基于贝叶斯物理信息神经网络的工业装备退化趋势预测方法(Pytorch)
本文提出一种基于贝叶斯物理信息神经网络的工业装备退化趋势预测方法。该方法首先对振动信号进行多尺度分析,提取时域、频域和时频域特征构建高维特征向量。然后构建具有不确定性量化能力的贝叶斯神经网络,引入方差估计模块和物理先验约束,确保退化过程符合客观规律。在训练阶段采用负对数似然损失函数和自适应权重平衡机制。预测时采用递归前向策略生成包含不确定性的退化轨迹,当预测值超过预设阈值时计算剩余使用寿命。实验结果表明,该方法能有效量化预测不确定性,为工业维护决策提供可靠依据。
2025-12-29 23:45:06
36
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅