程序设计作业week08

A - 区间选点 II

题目

给定一个数轴上的 n 个区间,要求在数轴上选取最少的点使得第 i 个区间 [ai, bi] 里至少有 ci 个点

使用差分约束系统的解法解决这道题
使用差分约束系统的解法解决这道题
使用差分约束系统的解法解决这道题
使用差分约束系统的解法解决这道题
使用差分约束系统的解法解决这道题

Input

输入第一行一个整数 n 表示区间的个数,接下来的 n 行,每一行两个用空格隔开的整数 a,b 表示区间的左右端点。1 <= n <= 50000, 0 <= ai <= bi <= 50000 并且 1 <= ci <= bi - ai+1。

Output

输出一个整数表示最少选取的点的个数

Sample Input

5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1

Sample Output

6

解题思路

构造不等式组:
sum[b] - sum[a-1] >= c
记为a-1到b的一条有向边,权重为c。

但是仅仅有这一个不等式是不够的,因为要保证sum的大小有意义,sum的大小有一个约束:
0 <= sum[i] - sum[i-1] <=1
这个不等式也可以像上面一样转换成有向边的形式存入图中。

由于a>=0,当a=0时,a-1下标越界,所以代码中将所有的下标都加了1,结果等效。并且用st/en标记压缩了一下范围。

然后,将SPFA求最短路中的松弛操作符号取反跑最长路即可。

完整代码

#include <iostream>
#include <cstdio>
#include <cmath>
#include <queue>
#include <vector>
#include <cstring>
using namespace std;
struct edge
{
	int from, to, w;
};
int n;
int st, en;
int sum[50010];
int inq[50010];
vector<edge> e[50010];
void add(int u, int v, int w)
{
	edge ee;
	ee.from = u;
	ee.to = v;
	ee.w = w;
	e[u].push_back(ee);
}
void make_graph(int m)
{
	en = 0, st = 10000000;
    for(int i=0;i<m;i++)
    {
        int a, b, c;
        scanf("%d %d %d", &a, &b, &c);
        add(a, b+1, c);		//有向图 
    	en = max(en, b+1);
		st = min(st, a);
	}
    for(int i=st;i<en;i++)
    {
    	add(i, i+1, 0);
    	add(i+1, i, -1);
	}
}
void SPFA(int s)
{
	for(int i=0;i<50010;i++)
	{
		sum[i] = -100000;
		inq[i] = 0;
	}
	queue<int> q;
	sum[s] = 0;
	inq[s] = 1;
	q.push(s);
	while(!q.empty())
	{
		int u = q.front();
		q.pop();
		inq[u] = 0;	
		for(int i=0;i<e[u].size();i++)
		{
			int v = e[u][i].to;
			int new_v = sum[u] + e[u][i].w;
			if(sum[v] < new_v)
			{
				sum[v] = new_v;
				if(!inq[v])
				{
					q.push(v);
					inq[v] = 1;
				}
			}
		}
	}
}
int main()
{
	scanf("%d", &n);
	make_graph(n);
	SPFA(st);
	printf("%d\n", sum[en]);
	return 0;
} 

B - 猫猫向前冲

题目

众所周知, TT 是一位重度爱猫人士,他有一只神奇的魔法猫。
有一天,TT 在 B 站上观看猫猫的比赛。一共有 N 只猫猫,编号依次为1,2,3,…,N进行比赛。比赛结束后,Up 主会为所有的猫猫从前到后依次排名并发放爱吃的小鱼干。不幸的是,此时 TT 的电子设备遭到了宇宙射线的降智打击,一下子都连不上网了,自然也看不到最后的颁奖典礼。
不幸中的万幸,TT 的魔法猫将每场比赛的结果都记录了下来,现在他想编程序确定字典序最小的名次序列,请你帮帮他。

Input

输入有若干组,每组中的第一行为二个数N(1<=N<=500),M;其中N表示猫猫的个数,M表示接着有M行的输入数据。接下来的M行数据中,每行也有两个整数P1,P2表示即编号为 P1 的猫猫赢了编号为 P2 的猫猫。

Output

给出一个符合要求的排名。输出时猫猫的编号之间有空格,最后一名后面没有空格!

其他说明:符合条件的排名可能不是唯一的,此时要求输出时编号小的队伍在前;输入数据保证是正确的,即输入数据确保一定能有一个符合要求的排名。

Sample Input

4 3
1 2
2 3
4 3

Sample Output

1 2 4 3

解题思路

一个简单的拓扑排序题。

拓扑排序的目标是将所有节点排序,使得排在前面的节点不能依赖于排在后面的节点。在一个有向无环图中,将图中的顶点以线性方式进行排序,使得对于任何的顶点 u 到 v 的有向边 (u, v) , 都可以有 u 在 v 的前面。

Kahn算法

1、将入度为 0 的点组成一个集合 S;
2、每次从 S 里面取出一个顶点 u (可以随便取)放入 L , 然后遍历顶点 u 的所有边 (u, v) , 并删除之,并判断如果该边的另一个顶点 v,如果在移除这一条边后入度为 0 , 那么就将这个顶点放入集合 S 中。不断地重复取出顶点然后重复这个过程……
3、最后当集合为空后,就检查图中是否存在任何边。如果有,那么这个图一定有环路,否者返回 L , L 中顺序就是拓扑排序的结果。

字典序最小:使用priority_queue构造最小堆,那么每次取出来的就是最小的,保证了字典序最小。

完整代码

#include <iostream>
#include <vector>
#include <cstdio>
#include <queue>
#include <algorithm>
using namespace std;
int N, M;
int du[510];
struct edge
{
	int from, to;
};
vector<edge> e[510];
struct cmp
{
	bool operator()(int a, int b)
	{
		return a>b;
	}
};
void add(int f, int t)
{
	edge ee;
	ee.from = f;
	ee.to = t;
	e[f].push_back(ee);
}
void make_graph(int m)
{
	for(int i=0;i<m;i++)
	{
		int f, t;
		cin>>f>>t;
		add(f, t);
		du[t]++;
	}
}
void kahn()
{
	priority_queue<int,vector<int>,cmp> q;
	vector<int> ans;
	for(int i=1;i<=N;i++)
	{
		if(du[i] == 0)	q.push(i);
	}
	while(!q.empty())
	{
		int u = q.top();
		q.pop();
		ans.push_back(u);
		for(int i=0;i<e[u].size();i++)
		{
			int v = e[u][i].to;
			du[v]--;
			if(du[v] == 0)	q.push(v);
		}
	}
	for(int i=0;i<ans.size();i++)
	{
		cout<<ans[i];
		if(i<N-1)	cout<<' ';
		if(i == N-1)	cout<<endl;
	}
}
int main()
{
	while(scanf("%d", &N) != EOF)
	{
		cin>>M;
		for(int i=0;i<510;i++)	
		{
			du[i] = 0;
			e[i].clear();
		}
		make_graph(M);
		kahn();
	}
	return 0;
} 

C - 班长竞选

题目

大学班级选班长,N 个同学均可以发表意见 若意见为 A B 则表示 A 认为 B 合适,意见具有传递性,即 A 认为 B 合适,B 认为 C 合适,则 A 也认为 C 合适 勤劳的 TT 收集了M条意见,想要知道最高票数,并给出一份候选人名单,即所有得票最多的同学,你能帮帮他吗?

Input
本题有多组数据。第一行 T 表示数据组数。每组数据开始有两个整数 N 和 M (2 <= n <= 5000, 0 <m <= 30000),接下来有 M 行包含两个整数 A 和 B(A != B) 表示 A 认为 B 合适。

Output
对于每组数据,第一行输出 “Case x: ”,x 表示数据的编号,从1开始,紧跟着是最高的票数。 接下来一行输出得票最多的同学的编号,用空格隔开,不忽略行末空格!

Sample Input

2
4 3
3 2
2 0
2 1

3 3
1 0
2 1
0 2

Sample Output

Case 1: 2
0 1
Case 2: 2
0 1 2

解题思路

强联通:有向图G中,如果两个顶点vi,vj有一条从vi到vj的有向路径,同时还有一条从vj到vi的路径,则称两个顶点强连通。如果有向图G中的每对顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。

kosaraju
在这里插入图片描述
算法解决的问题:
找到有向图中所有的 SCC
即对于图找到 {1, 2, 3}、{4, 5, 6, 7}、{8}

算法步骤:
第一遍 dfs 确定原图的逆后序序列,即 4 7 6 5 1 2 3 8
第二遍 dfs 在反图中按照逆后序序列进行遍历
反图即将原图中的有向边反向
每次由起点遍历到的点即构成一个 SCC

补充 dfs序
前序:第一次达到点 x 的次序,用 d[x] 表示
后序:x 点遍历完成的次序,即回溯时间,用 f[x] 表示

这题显然是一个强连通图问题,套算法做就行,取反存图,两次递归,求出最大票数。

完整代码

#include <iostream>
#include <vector>
#include <cstdio>
#include <cstring>
#include <math.h>
#include <algorithm>
using namespace std;
int T, n, m;
int dcnt, scnt, top;
bool vis[5010];
int pre[5010], scc[5010];
int stack[5010], p[5010], du[5010];
int sum[5010], num[5010];
struct edge
{
    int from, to;
};
edge e[30010];
vector<edge> g[5010];
void add(int u, int v) 
{
    edge ee;
    ee.from = u;
    ee.to = v;
    g[u].push_back(ee);
}
void make_graph() 
{
    scanf("%d %d", &n, &m);
    for (int i = 0; i < m; i++) 
	{
        scanf("%d %d", &e[i].from, &e[i].to);
        add(e[i].from, e[i].to);
    }
}
void dfs1(int u) 
{
    pre[u] = dcnt;
	p[u] = dcnt;
    dcnt++;
    stack[++top] = u; 
    for(int i=0;i<g[u].size();i++)
	{
		int v;
        v = g[u][i].to;
        if (!pre[v]) 
		{
            dfs1(v);
            p[u] = min(p[u], p[v]);
        }
        else if (!scc[v]) 
		{
            p[u] = min(p[u], pre[v]);
        }
    }
    if (p[u] == pre[u]) 
	{
        scnt++;
        num[scnt] = 0;
        while(1) 
		{
			int v;
            v = stack[top--];
            scc[v] = scnt;
            num[scnt]++;
            if(u == v)	break;
        }
    }
}
int dfs2(int u) 
{
    vis[u] = true;
    int tmp = num[u];
    for(int i=0;i<g[u].size();i++) 
	{
        int v = g[u][i].to;
        if (!vis[v]) 
		{
            tmp += dfs2(v);
        }
    }
    return tmp;
}
int cas = 1;
void kosaraju() 
{
    memset(pre, 0, sizeof(pre));
    memset(scc, 0, sizeof(scc));
    memset(du, 0, sizeof(du));
    memset(sum, 0, sizeof(sum));
    dcnt = scnt = top = 0;
    for (int i = 0; i < n; i++)
        if (!pre[i])	dfs1(i);
    for(int i=0;i<5010;i++)		g[i].clear();
    int u, v;
    //反向
    for (int i = 0; i < m; i++) 	 
	{
        u = scc[e[i].from];
        v = scc[e[i].to];
        if (u != v) 
		{
            add(v, u);
            du[u]++;
        }
    }
    int mm = -1;
    for (int i = 1; i <= scnt; i++) 
	{
        if (du[i] == 0) 
		{
            memset(vis, 0, sizeof(vis));
            sum[i] += dfs2(i);
            mm = max(sum[i], mm);
        }
    }
    //输出 
    printf("Case %d: %d\n", cas, mm - 1);
    cas++;
    bool judge = false;
    for (int i = 0; i < n; i++) 
	{
        if(sum[scc[i]] == mm) 
		{
            if(judge)	printf(" ");
            printf("%d", i);
            judge = true;
        }
    }
    printf("\n");
}
int main() 
{
    scanf("%d", &T);
    while (T--) 
	{
		for(int i=0;i<5010;i++)		g[i].clear();
        make_graph();
        kosaraju();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值