关于卡特兰数及典型例题

本文探讨了加法原理和乘法原理在解决数学问题中的应用,特别是如何利用这些原理来处理凸多边形的编号问题。通过举例说明,阐述了加法原理如何计算不同解决方案的总数,其中涉及到了三角形划分和多边形边的编号。核心问题的解决方案通过代码实现,展示了加法原理的实际运用。
摘要由CSDN通过智能技术生成

关于卡特兰数:
f[0] = 1, f[1] = 1;
for(int i = 2; i <= n; i++)
    for(int j = 0; j < i; j++)
        f[i] += f[j] * f[i-j-1];

关于乘法原理和加法原理:
1.便捷记忆:乘法原理:步步相关

                    加法原理:类类独立

2.区别:对于乘法原理,我们假设解决一件事需要n步。再假设完成第1步有m1种方法,完成第2步有m2种方法........完成第n步有mn种方法。则对于完成这件事的总方法数:Total = m1 * m2 * m3 * ..... *mn

            那么对于加法原理,我们就假设解决一件事有n种解决方案数。假设第一种方案有m1种解决方法,第2种方案有m2种解决方法.....第n种方案有m

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值