HDU-4359-DP+C(n, m)大数求

比赛的时候一直在敲这道题。一开题就盯住这个名字了。有人说他说是 treeDP 不一定真的是 treeDP。

总有时候别人会给你很诚恳的忠告。却只因自己陷得太深无法自拔。关键是自己不想出去。

跑题了。

读错题了。n,d. d 是说 深度恰好为 d , 我给理解为不超过 d 。 于是最后答案变成 ans(n,d) - ans(n, d-1) 就可以了。

C(n, m) 那个东西 , 由于里面有除法 , 不能直接 mod 。这里套了一个我完全不懂的模版 。

依然不能 AC 。后来输出到一个文件里, 发现里面有负数 。 发现有个三连乘 , 可能超 __int64 . 太贱了。

一道题,核心东西就那么一点,乱七八糟的一大堆。短木板原则么。

其实这道题我也不知道更像DP 还是组合数学 还是都不是 。

很多事 , 本来就不用分那么清楚。也分不清楚。


const int N = 370;
const __int64 mod = 1000000007;

__int64 dp[N][N], CC[N][N];


inline __int64 log2(__int64 n)
{
    __int64 a = 0;
    while(n)
    {
        a++;
        n>>=1;
    }
    return a;
}
__int64 Extend_euclid(__int64 a,__int64 b,__int64 &x,__int64 &y)
{
    __int64 d=0,t=0;
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    else
    {
        d=Extend_euclid(b,a%b,x,y);
        t=x;
        x=y;
        y=t-a/b*y;
    }
    return d;
}
__int64 Bignum_Div(__int64 a,__int64 b,__int64 mod)
{
    __int64 x=0,y=0;
    Extend_euclid(b,mod,x,y);//扩展gcd求出(2*n)*x-mod*k=1的x
    __int64 ans= a*x%mod;//ans/(2*n)%p = ((ans*x)/(2*n*x))%p=ans*x%mod; (p=1000000007,显然gcd(2*n,p)=1)
    while(ans<0)
        ans+=mod;
    return ans;
}
int64 ice(int64 x,int64 y,int64 mod)
{
	int64 temp=x,res=1;
	while(y)
	{
		if(y&1)
			res=(res*temp)%mod;
		temp=(temp*temp)%mod;
		y>>=1;
	}
	return res;
}
int64 cnm(int64 x,int64 y,int64 mod)
{
	int64 ans=1,a,b;
	for(int64 i=0;i<y;i++)
	{
		a=(x-i)%mod;
		b=(y-i)%mod;
		ans=ans*(a*ice(b,mod-2,mod)%mod)%mod;
	}
	return ans%mod;
}
__int64 lucas(__int64 x,__int64 y,__int64 mod)
{
	if(y==0)
		return 1;
	return (cnm(x%mod,y%mod,mod)*lucas(x/mod,y/mod,mod))%mod;
}

__int64 C(int n, int m)
{
    if(n==0 || m==0 || m>=n) return 1;
    if(CC[n][m]!=-1) return CC[n][m];
    __int64 ans = 1;
    int nn=n, mm=m;
    m = min( m, n-m );
    for(int i=1; i<=m; i++, n--)
    {
       ans=Bignum_Div( ans*(__int64)n%mod, (__int64)i, mod )%mod;
       //ans = ans*(__int64)n/(__int64)i%mod;
    }
    return CC[nn][mm] = ans;
}

__int64 dfs(int64 n, int64 d)
{
    d = min(n, d);
    if(dp[n][d]!=-1) return dp[n][d]; //记忆化
    int k = log2(n); //至少层数
    if(d<k) return dp[n][d] = 0; //你懂得
    if(n==1) return dp[n][d] = 1;
    if(n==0) return dp[n][d] = 1;
    int i, j;
    __int64 tmp = 0;
    for(i=0; i<n; i++)
    {
        __int64 tmp1 = dfs(n-i-1, d-1); //分给右孩子n-i-1个点
        if(tmp1==0) continue;
        __int64 tmp0 = dfs(i, d-1); //分给左孩子i个点
        if(tmp0==0) break;
        tmp =tmp+ C(n-2, i)*tmp0%mod*tmp1%mod; //分给左孩子的不是根节点,不是除根节点最大的点,所以有C(n-2, i)
        tmp %= mod;
    }
    return dp[n][d] = tmp*(__int64)n%mod; //根节点有n种
}

int main()
{
    int t, tt=0, n, d;
    memset(dp, -1, sizeof(dp));
    memset(CC, -1, sizeof(CC));
    __int64 ii, j;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&d);
        printf("Case #%d: %I64d\n", ++tt, (dfs(n, d)-dfs(n,d-1)+mod)%mod);
    }
    return 0;
}


阅读更多
文章标签: c div 扩展
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭