算法入门--排序--快速排序03

目录

粗涩的简介

不简但详细的例子

1. 选择基准值

2. 分区操作

分区操作

分区操作的详细过程

3. 递归排序子数组

左子数组排序

右子数组排序

4. 最终结果

快速排序 python 代码

快速排序 C语言  代码

快速排序 C语言-指针  代码

快速排序 Java 代码

时间复杂度O(n log n)

缺点

优点

适应性(Adaptability)

非适应性(Non-adaptiveness)

背景拓展

快速排序的背景和历史

快速排序的数学原理

快速排序的性能分析

快速排序的应用

结论


粗涩的简介

快速排序(Quick Sort)是一种高效的排序算法,采用分治法(Divide and Conquer)的策略来把一个序列分为较小和较大的两个子序列,然后递归地排序两个子序列。 快速排序的基本步骤如下:

  1. 选择基准值(Pivot):从数组中挑选一个元素作为基准值,选择方法有多种,例如可以选第一个元素、最后一个元素、中间元素或者随机一个元素。

  2. 分区(Partitioning):重新排列数组,所有比基准值小的元素摆放在基准前面,所有比基准值大的元素摆在基准的后面(相等的数可以到任一边)。在这个分区退出之后,该基准就处于数组的中间位置。这个称为分区(partition)操作。

  3. 递归排序:递归地将小于基准值元素的子数组和大于基准值元素的子数组排序。

不简但详细的例子

以下是快速排序的一个简单例子:

假设现在有7个数:[5, 3, 8, 4, 2, 9, 1]

1. 选择基准值

我们选择数组的第一个元素5作为基准值。

2. 分区操作

我们将数组中的元素根据它们与基准值5的大小关系进行重新排列。所有小于5的元素将被移动到5的左边,所有大于5的元素将被移动到5的右边。

  • 初始数组:[5, 3, 8, 4, 2, 9, 1]
  • 分区后数组:[3, 2, 1, 4, 5, 8, 9]

在分区操作中,基准值5已经移动到了它在排序后数组中的正确位置,即所有元素都比5小的位置。

分区操作

  1. 初始化两个指针:我们设置两个指针,一个指针(称为小于基准值指针)初始化为数组的起始位置(即索引0),另一个指针(称为大于基准值指针)初始化为数组的最后一个元素的前一个位置(即索引6)。

  2. 开始遍历数组:我们从头开始遍历数组,寻找第一个小于基准值的元素。对于每个元素,我们检查它是否小于基准值5。

  3. 找到小于基准值的元素:当我们遇到一个小于基准值的元素时,我们将它与小于基准值指针所指向的元素交换。然后,我们将小于基准值指针向右移动一位。

  4. 继续遍历:我们继续遍历数组,重复步骤3,直到小于基准值指针超过了大于基准值指针。

  5. 交换基准值和大于基准值指针的元素:当我们完成遍历后,我们将基准值与大于基准值指针所指向的元素交换。这是因为在遍历过程中,所有小于基准值的元素都被移动到了左边,而大于基准值的元素都被移动到了右边。通过交换基准值,我们确保它最终位于数组中间,即所有小于它的元素都在左边,所有大于它的元素都在右边。

分区操作的详细过程
  1. 初始指针位置:

    • 小于基准值指针:位置0(指向5)
    • 大于基准值指针:位置6(指向1)
  2. 开始遍历数组:

    • 检查元素3,它小于基准值5,所以我们将它与位置0的元素交换。交换后的数组为 [3, 5, 8, 4, 2, 9, 1]。
    • 小于基准值指针向右移动一位,现在指向位置1。
  3. 继续遍历:

    • 检查元素8,它大于基准值5,所以我们不进行交换,继续遍历。
    • 检查元素4,它小于基准值5,我们将它与位置1的元素交换。交换后的数组为 [3, 4, 8, 5, 2, 9, 1]。
    • 小于基准值指针再次向右移动一位,现在指向位置2。
  4. 继续遍历:

    • 检查元素2,它小于基准值5,我们将它与位置2的元素交换。交换后的数组为 [3, 4, 2, 5, 8, 9, 1]。
    • 小于基准值指针再次向右移动一位,现在指向位置3。
  5. 继续遍历:

    • 检查元素9,它大于基准值5,所以我们不进行交换,继续遍历。
    • 检查元素1,它小于基准值5,我们将它与位置3的元素交换。交换后的数组为 [3, 4, 2, 1, 8, 9, 5]。
    • 小于基准值指针再次向右移动一位,现在指向位置4。
  6. 此时,小于基准值指针已经到达了大于基准值指针的右边,遍历结束。

  7. 交换基准值和大于基准值指针的元素:

    • 将基准值5与位置4的元素1交换。交换后的数组为 [3, 4, 2, 1, 5, 9, 8]。
3. 递归排序子数组

接下来,我们对基准值5左边和右边的子数组分别进行快速排序。

左子数组排序

左子数组包含所有小于5的元素:[3, 2, 1, 4]。

  • 我们对左子数组重复快速排序的过程,选择新的基准值并进行分区操作。
  • 假设我们选择第一个元素3作为新的基准值。
  • 分区后,所有小于3的元素在左边,所有大于3的元素在右边。
  • 分区操作后得到:[1, 2, 3, 4]。
  • 现在我们有两个子数组:[1, 2] 和 [4]。
  • 对这两个子数组重复上述过程,最终得到排序后的左子数组:[1, 2, 3, 4]。
右子数组排序

右子数组包含所有大于5的元素:[8, 9]。

  • 由于这个子数组只有两个元素,我们可以直接进行分区操作。
  • 选择第一个元素8作为新的基准值。
  • 分区操作后得到:[8, 9]。
  • 由于9已经在正确的位置上,这个子数组已经是有序的。
4. 最终结果

经过递归排序后,我们得到了最终的排序数组:[1, 2, 3, 4, 5, 8, 9]。

通过选择5作为基准值,我们可以看到快速排序算法如何通过分区操作和递归排序来对数组进行排序。这个过程会一直持续到所有子数组都只剩下一个元素或者为空,这时整个数组就是有序的。快速排序算法的平均时间复杂度为O(n log n),在大多数情况下它是一个非常高效的排序方法。

快速排序 python 代码

以下是使用Python实现的快速排序算法

def quick_sort(arr):
    # 基本情况:如果数组为空或只有一个元素,直接返回
    if len(arr) <= 1:
        return arr

    # 选择第一个元素作为基准值
    pivot = arr[0]

    # 初始化三个列表:小于基准值的元素、等于基准值的元素、大于基准值的元素
    less = []
    equal = []
    greater = []

    # 从第二个元素开始遍历数组
    for num in arr[1:]:
        # 如果当前元素小于基准值,添加到less列表
        if num < pivot:
            less.append(num)
        # 如果当前元素等于基准值,添加到equal列表
        elif num == pivot:
            equal.append(num)
        # 如果当前元素大于基准值,添加到greater列表
        else:
            greater.append(num)

    # 递归地对less和greater列表进行快速排序,然后将结果合并
    return quick_sort(less) + equal + quick_sort(greater)

# 初始数组
data = [5, 3, 8, 4, 2, 9, 1]

# 执行快速排序
sorted_data = quick_sort(data)

# 打印排序后的数组
print(sorted_data)

这段代码通过使用简单的循环和条件判断,将数组中的元素根据与基准值的大小关系分配到三个不同的列表中。然后,它递归地对 lessgreater 列表应用快速排序算法,并将结果与 equal 列表合并,最终得到排序后的数组。

这个实现方式更加直观,易于理解快速排序算法的工作原理。运行这段代码,你将得到排序后的数组 [1, 2, 3, 4, 5, 8, 9]

请注意,代码中 return quick_sort(less) + equal + quick_sort(greater)值得你注意
return quick_sort(less) + equal + quick_sort(greater) 
这行代码体现了递归的思想。在快速排序算法中,递归是一种非常重要的概念,
它指的是一个函数调用自身来解决问题的一部分,
然后将这些部分的解决方案组合起来形成最终的解决方案。

quick_sort(less) 表示对包含所有小于基准值的元素的子数组 less 进行快速排序。
equal 是一个列表,包含了所有等于基准值的元素,由于这些元素已经等于基准值,
它们不需要排序(在这个例子中,我们假设基准值是唯一的,所以 equal 列表中的元素已经是有序的)。
quick_sort(greater) 表示对包含所有大于基准值的元素的子数组 greater 进行快速排序。
这行代码将 less 子数组排序后的结果、equal 列表(直接返回,因为它们已经是基准值),
以及 greater 子数组排序后的结果,按顺序连接起来,形成了最终的排序数组。

递归的关键在于每次函数调用时问题的规模都在减小。在快速排序中,这意味着每次分区操作后,
我们都会得到两个更小的子数组,然后递归地对这两个子数组进行排序。递归继续进行,
直到子数组的大小减少到1或0,这时就不需要再排序了,
因为一个空数组或只包含一个元素的数组自然是有序的。
这里对应代码开头的
   # 基本情况:如果数组为空或只有一个元素,直接返回
    if len(arr) <= 1:
        return arr                

快速排序 C语言  代码

以下是不使用指针的C语言快速排序算法实现:

#include <stdio.h>

// 交换数组中的两个元素
void swap(int arr[], int i, int j) {
    int temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}

// 快速排序的分区函数
int partition(int arr[], int low, int high) {
    int pivot = arr[high]; // 选择最后一个元素作为基准值
    int i = low - 1; // 指向小于基准值的元素的最后一个位置

    for (int j = low; j < high; j++) {
        // 如果当前元素小于或等于基准值
        if (arr[j] <= pivot) {
            i++;
            // 交换 arr[i] 和 arr[j]
            swap(arr, i, j);
        }
    }
    // 交换 arr[i + 1] 和 arr[high]
    swap(arr, i + 1, high);
    return i + 1;
}

// 快速排序函数
void quick_sort(int arr[], int low, int high) {
    if (low < high) {
        int pi = partition(arr, low, high); // 分区操作

        // 递归地对左右两个子数组进行快速排序
        quick_sort(arr, low, pi - 1);
        quick_sort(arr, pi + 1, high);
    }
}

int main() {
    int data[] = {5, 3, 8, 4, 2, 9, 1};
    int n = sizeof(data) / sizeof(data[0]);
    quick_sort(data, 0, n - 1);
    printf("Sorted array:\n");
    for (int i = 0; i < n; i++) {
        printf("%d ", data[i]);
    }
    printf("\n");
    return 0;
}

使用指针在C语言编程中有许多好处,尤其在实现像快速排序这样的算法时,指针可以提供更高的效率和灵活性。以下是使用指针的一些主要优点:

  1. 直接访问和操作内存:指针允许程序直接访问和操作内存中的特定位置。这意味着通过指针,我们可以直接修改数组元素的值,而不需要通过数组下标进行间接访问。

  2. 提高效率:在某些情况下,使用指针可以减少程序的运行时间。例如,在快速排序中,我们通常需要交换基准值和某个元素的位置。使用指针,我们可以在常数时间内完成交换操作,而不需要遍历数组来找到元素的具体位置。

  3. 动态内存分配:指针使得动态内存分配成为可能。在C语言中,我们可以使用 malloccallocreallocfree 等函数来分配和释放内存。这对于处理大小未知的数据结构或在运行时根据需要调整数据结构大小非常有用。

  4. 传递引用:当函数需要修改传入的参数时,使用指针可以避免复制整个数据结构的开销。在C语言中,函数参数默认按值传递,如果传递的是大型结构,这可能会导致性能问题。通过传递指针,我们实际上是传递了数据的引用,函数可以直接在原始数据上进行操作。

  5. 处理复杂数据结构:指针在处理如链表、树、图等复杂数据结构时非常有用。这些数据结构通常需要动态分配内存,并且它们的结构通常不是连续存储的,指针提供了一种灵活的方式来访问和操作这些结构中的元素。

  6. 函数的多功能性:通过使用指针,一个函数可以设计成处理不同类型的数据。例如,一个排序函数可以接受一个指针和一个大小参数,这样就可以对任何类型的数组进行排序,而不是仅限于特定类型的数组。

  7. 数组和指针的紧密关系:在C语言中,数组名本身就是一个指向数组第一个元素的指针。这意味着我们可以在数组和指针之间无缝切换,这在处理数组时提供了极大的便利。

总的来说,指针是C语言中一个非常强大和灵活的特性,它使得程序员能够更接近硬件层面,编写出更高效和灵活的代码。然而,指针的使用也需要谨慎,因为不当的指针操作可能会导致程序错误,如内存泄漏、野指针等问题,以下是使用指针的快速排序代码

快速排序 C语言-指针  代码

#include <stdio.h>

void swap(int *a, int *b) {
    int t = *a;
    *a = *b;
    *b = t;
}

int partition(int arr[], int low, int high) {
    int pivot = arr[high]; // 选择最后一个元素作为基准值
    int i = (low - 1); // 指向小于基准值的元素的最后一个位置

    for (int j = low; j <= high - 1; j++) {
        // 如果当前元素小于或等于基准值
        if (arr[j] <= pivot) {
            i++; // 移动小于基准值的元素的位置
            swap(&arr[i], &arr[j]);
        }
    }
    swap(&arr[i + 1], &arr[high]);
    return (i + 1);
}

void quick_sort(int arr[], int low, int high) {
    if (low < high) {
        int pi = partition(arr, low, high); // 分区操作

        // 递归地对左右两个子数组进行快速排序
        quick_sort(arr, low, pi - 1);
        quick_sort(arr, pi + 1, high);
    }
}

int main() {
    int data[] = {5, 3, 8, 4, 2, 9, 1};
    int n = sizeof(data) / sizeof(data[0]);
    quick_sort(data, 0, n - 1);
    printf("Sorted array:\n");
    for (int i = 0; i < n; i++) {
        printf("%d ", data[i]);
    }
    printf("\n");
    return 0;
}

这段C语言代码首先定义了一个 swap 函数,用于交换两个元素的位置。然后定义了 partition 函数,它执行分区操作并返回基准值的最终位置。quick_sort 函数是快速排序算法的主体,它递归地对数组的子区间进行排序。

main 函数中,我们初始化了一个待排序的数组 data,调用 quick_sort 函数对其进行排序,然后打印排序后的数组。

快速排序 Java 代码

在Java中实现快速排序算法,我们可以创建一个类来包含排序的逻辑,并提供一个公共的静态方法来对数组进行排序。以下是使用Java实现的快速排序算法,对数组 [5, 3, 8, 4, 2, 9, 1] 进行排序的代码示例:

public class QuickSort {

    public static void quickSort(int[] arr, int low, int high) {
        if (low < high) {
            // 分区操作,获取基准值的正确位置
            int pivotIndex = partition(arr, low, high);

            // 递归地对左右两个子数组进行快速排序
            quickSort(arr, low, pivotIndex - 1);
            quickSort(arr, pivotIndex + 1, high);
        }
    }

    private static int partition(int[] arr, int low, int high) {
        // 选择最后一个元素作为基准值
        int pivot = arr[high];
        int i = low - 1;

        for (int j = low; j < high; j++) {
            // 如果当前元素小于或等于基准值
            if (arr[j] <= pivot) {
                i++;

                // 交换 arr[i] 和 arr[j]
                int temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
            }
        }

        // 交换 arr[i + 1] 和 arr[high]
        int temp = arr[i + 1];
        arr[i + 1] = arr[high];
        arr[high] = temp;

        return i + 1;
    }

    public static void main(String[] args) {
        int[] data = {5, 3, 8, 4, 2, 9, 1};
        quickSort(data, 0, data.length - 1);

        System.out.print("Sorted array: ");
        for (int value : data) {
            System.out.print(value + " ");
        }
    }
}

在这个Java程序中,我们定义了一个名为 QuickSort 的类,其中包含两个主要的方法:

  • quickSort:这是快速排序的主要方法,它接受一个数组以及要排序的部分的起始和结束索引。如果起始索引小于结束索引,它将执行分区操作,并对左右两个子数组递归地调用自身进行排序。

  • partition:这个辅助方法执行分区操作,它将数组中的元素根据与基准值的大小关系进行重新排列,并返回基准值的最终索引位置。

main 方法中,我们初始化了一个待排序的数组 data,调用 quickSort 方法对其进行排序,然后打印排序后的数组。

时间复杂度O(n log n)

快速排序算法的时间复杂度根据输入数据的顺序和选择的基准值的不同而有所变化。下面是快速排序算法的时间复杂度分析:

  1. 最佳情况:在最佳情况下,每次分区操作都能将数组均匀地分成两部分,使得每一部分的大小大致相等。这种情况下,快速排序的时间复杂度为 O(n log n),其中 n 是数组的元素数量。这是因为快速排序需要进行 log n 次分区操作(每次分区操作将数组分成两部分,所以总共需要 log₂n 次操作),而在每一层的分区操作中,需要进行 n 次比较和交换。因此,总的时间复杂度为 O(n log n)。

  2. 平均情况:在平均情况下,快速排序的性能也非常接近最佳情况。尽管不是每次分区都能完全均匀地分割数组,但只要分区相对均衡,快速排序的时间复杂度仍然接近 O(n log n)。

  3. 最坏情况:在最坏情况下,如果每次分区操作都选择到了数组中的最小或最大元素作为基准值,那么分区操作将无法有效地分割数组。这将导致快速排序的时间复杂度退化为 O(n^2)。这种情况在实际应用中比较少见,但当输入数组已经是有序的或者接近有序时,快速排序的性能会显著下降。

为了提高快速排序的性能,通常会采取一些策略来避免最坏情况的发生,例如:

  • 随机选择基准值:通过随机选择数组中的一个元素作为基准值,可以大大降低最坏情况发生的概率。
  • 选择中位数作为基准值:使用三数取中法(median-of-three)来选择基准值,可以提高分区操作的效率。
  • 切换到其他排序算法:当数组的大小较小时,快速排序可能不如其他简单的排序算法(如插入排序)高效。因此,可以在递归深度达到一定阈值时切换到其他排序算法。

总的来说,快速排序是一种非常高效的排序算法,其平均时间复杂度为 O(n log n),在实际应用中通常优于其他 O(n log n) 算法,如归并排序和堆排序。通过适当的优化,快速排序可以避免最坏情况的发生,从而在大多数情况下保持高效的性能。

缺点

尽管快速排序是一种非常高效的排序算法,并且平均时间复杂度为 O(n log n),在实际应用中表现良好,但它也有一些缺点和局限性:

  1. 最坏情况性能:在最坏情况下,快速排序的时间复杂度会退化到 O(n^2)。这种情况通常发生在当输入数组已经几乎有序或逆序有序时,因为每次分区操作可能会导致极端的不平衡。虽然这种情况不常见,但如果发生,会影响算法的性能。

  2. 额外空间复杂度:虽然快速排序是就地排序,不需要额外的存储空间来保存排序结果,但递归调用可能会导致较高的栈空间使用。在极端情况下,如果排序的数组非常大,可能会导致栈溢出。

  3. 不稳定:快速排序是不稳定的排序算法。这意味着具有相同键值的元素在排序后可能不保留它们原始的相对顺序。这可能在某些需要保持元素顺序的应用场景中成为问题。

  4. 难以并行化:快速排序的并行化比较困难,因为它依赖于递归和分区操作,这些操作的状态通常依赖于前一步的结果。虽然可以对快速排序进行一定程度的并行化改进,但这会增加算法的复杂性。

  5. 分区选择:快速排序的性能很大程度上取决于基准值的选择。需要一个良好的策略来选择基准值,以避免最坏情况的发生。在实践中,这可能需要额外的计算或者随机化过程。

  6. 非适应性:快速排序不是一种自适应的排序算法,它不会根据输入数据的特点来调整其行为。这意味着在某些特定类型的数据集上,其他排序算法(如归并排序或堆排序)可能会有更好的性能。

  7. 复杂性:快速排序的实现相对复杂,尤其是涉及到递归和分区操作。这可能会使得代码难以理解和维护,尤其是对于初学者来说。

尽管存在这些缺点,快速排序仍然是许多应用的首选排序算法,因为它的平均性能很好,且在大多数情况下都能提供快速的排序结果。通过适当的优化和策略选择,可以最大限度地减少这些缺点的影响。

优点

快速排序算法有许多显著的优点,使其成为处理大数据集时的首选算法之一。以下是快速排序的主要优点:

  1. 平均时间复杂度:快速排序的平均时间复杂度为 O(n log n),在大多数情况下,它比其他 O(n log n) 算法(如归并排序和堆排序)更快。这是因为快速排序的内部循环可以非常高效地在现代架构上实现,并且可以很好地利用缓存。

  2. 空间效率:快速排序是就地排序算法,不需要额外的存储空间来存储排序后的数组。它只在原地对输入数组进行操作,这使得它在空间效率上优于一些需要额外存储空间的排序算法。

  3. 缓存性能:由于快速排序的分区操作通常会在数组的连续内存块上进行操作,这有助于提高缓存命中率,从而提高算法的执行速度。

  4. 无需数据复制:快速排序不需要复制整个数组,它通过交换元素的位置来对数组进行排序。这减少了算法的开销,特别是在处理大型数据集时。

  5. 适应性:快速排序可以很容易地适应不同的情况。例如,可以通过随机化基准值的选择来避免最坏情况的发生,或者通过切换到其他排序算法(如插入排序)来处理小数组或接近排序完成的数组。

  6. 递归结构:快速排序的递归结构使得它易于实现和理解。递归方法也使得算法可以自然地并行化,虽然这需要一些额外的工作来管理并发操作。

  7. 稳定性可选项:虽然快速排序本身是不稳定的排序算法,但可以通过一些修改使其变为稳定的排序算法。例如,可以通过在分区操作中使用稳定的分区方法来保持相等元素的原始顺序。

  8. 通用性:快速排序可以应用于各种数据类型和结构,包括数组、链表等。它也可以用于多关键字排序,只需在分区操作中对多个字段进行比较即可。

总之,快速排序因其高效、空间经济和易于实现的特点,在实际应用中被广泛使用。通过适当的优化,快速排序可以处理各种大小的数据集,并提供出色的性能。

emmm,或许你看见了优点和缺点中冲突的地方,但是,大多数是在解释优化方法,但就“适应性”和“非适应性”有必要作出额外说明

这里提到的“适应性”和“非适应性”是快速排序算法的两个不同方面,它们分别描述了算法在不同情况下的灵活性和性能表现。

适应性(Adaptability)

当说到快速排序具有适应性时,我们指的是算法可以通过一些策略来优化其性能,以适应不同的输入数据。例如:

  • 随机化基准值选择:为了避免最坏情况的发生(例如,当数组已经有序或接近有序时),可以通过随机选择基准值来打乱输入数据的顺序,从而使得分区操作更加均匀,提高算法的平均性能。

  • 切换到其他排序算法:在处理小数组或数据已经接近排序完成的情况下,快速排序可以通过切换到其他更高效的排序算法(如插入排序)来提高性能。这是因为对于小数组,插入排序的性能可能更好,而对于接近有序的数据,插入排序可以更快地完成排序任务。

这种适应性表明快速排序可以通过改变其实现细节来优化特定情况下的性能。

非适应性(Non-adaptiveness)

另一方面,当我们说快速排序是非自适应的时,我们指的是算法本身不会根据输入数据的特点自动调整其行为。这意味着快速排序的性能在很大程度上取决于初始数据的顺序和基准值的选择,而算法本身不会根据数据的特定特征(如是否接近有序)来改变其排序策略。

例如,如果输入数据是逆序的,快速排序可能会表现出较差的性能,因为它依赖于基准值将数据分为两部分,而逆序的数据会导致不平衡的分区。在这种情况下,归并排序或堆排序可能会有更好的性能,因为它们不依赖于基准值的选择,并且可以稳定地处理各种类型的数据。

总结来说,快速排序的适应性体现在可以通过外部策略来优化性能,而非适应性则体现在算法本身不会根据数据特征自动调整其行为。这种特性根据实际情况选择合适的策略和算法,以获得最佳的排序性能。

背景拓展

不得不说,快速排序是原始算法系列少有的有起源史的了,以下是些许介绍

快速排序算法是由英国计算机科学家托尼·霍尔(Tony Hoare)在1960年提出的,并且在1961年的一篇论文中首次描述。霍尔在设计这个算法时,是受到分治法(Divide and Conquer)策略的启发。快速排序自提出以来,由于其高效的性能和实现的简洁性,很快在计算机科学领域得到了广泛的应用。

审核中:

【免费】托尼·霍尔(C.A.R.Hoare)在1962年发表的关于快速排序算法的原始论文《Quicksort》.zip资源-CSDN文库icon-default.png?t=N7T8https://download.csdn.net/download/walkerxsxk/89063924原网址:

Quicksort | The Computer Journal | Oxford AcademicAbstract. A description is given of a new method of sorting in the random-access store of a computer. The method compares very favourably with other knownicon-default.png?t=N7T8https://doi.org/10.1093/comjnl/5.1.10

快速排序的背景和历史

在快速排序算法出现之前,计算机科学家们已经在使用各种排序算法,如冒泡排序、插入排序和选择排序等。然而,这些算法在处理大数据集时效率较低,特别是当数据量非常大时,它们的性能会受到显著影响。因此,寻找一种更高效的排序算法成为了当时的一个迫切需求。

霍尔在研究过程中发现,通过选择一个基准值(pivot)并将数据集分为两部分,一部分包含所有小于基准值的元素,另一部分包含所有大于基准值的元素,可以有效地简化排序问题。这种方法不仅减少了比较和交换的次数,而且可以通过递归的方式应用到子数据集上,从而大大提高了排序的效率。

快速排序的数学原理

快速排序的数学原理基于分治法,这是一种将复杂问题分解为更小、更易于解决的子问题的方法。在快速排序中,分治法的应用体现在以下几个步骤:

  1. 选择基准值:从数组中选择一个元素作为基准值。这个选择可以是随机的,也可以基于某些启发式方法,如选择数组的第一个元素、最后一个元素或中间元素。

  2. 分区操作:重新排列数组,使得所有小于基准值的元素都在基准值的左边,所有大于基准值的元素都在基准值的右边。这个过程称为分区(partitioning),它确保了基准值最终位于其在排序数组中的最终位置。

  3. 递归排序:对基准值左边和右边的子数组分别进行快速排序。由于这两个子数组都比原始数组小,因此可以递归地应用快速排序算法,直到子数组的大小减少到可以轻松排序为止。

快速排序的性能分析

快速排序的平均时间复杂度为 O(n log n),在大多数情况下,它比其他 O(n log n) 算法更高效。然而,在最坏情况下,当每次分区操作都选择到了数组中的最小或最大元素作为基准值时,快速排序的时间复杂度会退化到 O(n^2)。尽管如此,通过随机化基准值的选择或使用其他策略,可以大大降低最坏情况发生的概率。

快速排序的应用

快速排序因其高效的性能,在许多领域都有广泛的应用,包括数据库管理系统、编程语言的标准库、网络通信协议等。它不仅用于排序数字,还可以用于排序字符串、日期、自定义对象等各种可比较的数据类型。

结论

快速排序算法的提出和发展,是计算机科学领域的一个重要里程碑。它不仅提高了数据处理的效率,而且对后续算法设计和分析有着深远的影响。通过不断的研究和改进,快速排序算法已经成为现代计算机科学中不可或缺的一部分。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值