保存加载用于推理的常规Checkpoint/或继续训练

该博客介绍了如何在PyTorch中保存和加载模型的检查点,包括模型参数、优化器状态以及训练的epoch和loss。通过使用`torch.save()`和`torch.load()`,可以在训练过程中定期保存模型,并在之后的推理或继续训练时加载这些信息。检查点文件包含了模型的重要状态,而state_dict则用于存储模型参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

保存加载用于推理的常规Checkpoint/或继续训练

https://blog.csdn.net/qq_38765642/article/details/109784913

if (epoch+1) % checkpoint_interval == 0:

        checkpoint = {"model_state_dict": net.state_dict(),
                      "optimizer_state_dict": optimizer.state_dict(),
                      "epoch": epoch}
        path_checkpoint = "./checkpoint_{}_epoch.pkl".format(epoch)
        torch.save(checkpoint, path_checkpoint)
#或者
#保存
torch.save({
            'epoch': epoch,
            'model_state_dict': model.state_dict(),
            'optimizer_state_dict': optimizer.state_dict(),
            'loss': loss,
            ...
            }, PATH)
#加载
model = TheModelClass(*args, **kwargs)
optimizer = TheOptimizerClass(*args, **kwargs)

checkpoint = torch.load(PATH)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint['epoch']
loss = checkpoint['loss']

model.eval()
# - 或者 -
model.train()

checkpoint检查点:不仅保存模型的参数,优化器参数,还有loss,epoch等(相当于一个保存模型的文件夹)
state_dict可以用于保存模型的参数 及优化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值