walkskyer
这个作者很懒,什么都没留下…
展开
-
ollama入门系列教程简介与目录
Ollama教程系列是为那些希望深入了解并掌握Ollama框架的开发者设计的。通过这一系列的教程,用户将学习如何从基础设置到高级功能的各个方面,有效地在Ollama平台上开发和部署大型语言模型。本系列包括如何将模型导入Ollama框架、利用与OpenAI兼容的API、以及如何使用LangChain等工具增强项目功能。此外,系列还涵盖了如何通过Ollama的原生API生成内容,并构建实用的AI应用。无论是初学者还是寻求进一步深化知识的开发者,本教程系列都将提供必要的知识和技能,以实现有效的AI解决方案开发。原创 2024-06-01 09:45:00 · 1913 阅读 · 0 评论 -
Ollama教程——入门:开启本地大型语言模型开发之旅
ollama不仅支持运行预构建的模型,还提供了灵活的工具来导入和自定义您自己的模型。无论是从GGUF格式导入还是进行模型的个性化设置,ollama都能满足您的需求。您还可以通过自定义提示来调整模型的行为。接着,创建一个ModelfileFROM llama2 # 设置创造性更高的温度参数 PARAMETER temperature 1 # 设置系统消息 SYSTEM "" "你是超级马里奥,以马里奥的身份回答问题。"" "这样,您就能按照自己的需求定制模型了。原创 2024-04-02 08:56:04 · 51756 阅读 · 13 评论 -
ollama教程——深入解析Ollama Modelfile:从基础到高级配置的完整指南
Ollama是一个旨在简化大型语言模型本地运行的开源框架。它的设计理念是通过将模型权重、配置和数据捆绑到一个包中,从而优化设置和配置细节,使开发者能够更轻松地管理和运行复杂的模型。FROM指令用于指定要使用的基础模型。这是每个Modelfile必须包含的一部分,用于确定模型的起始版本或路径。首先,您需要选择一个基础模型作为构建其他功能的起点。这是通过FROM指令实现的。基础模型决定了您的模型将继承哪些特性和能力。在这里,我们选择了llama3.2作为基础模型。您可以根据需求选择不同的版本或路径。原创 2025-02-17 08:57:02 · 328 阅读 · 0 评论 -
ollama教程——从零开始:Ollama与DeepSeek-R1的本地化部署教程
在这篇文章中,我们详细介绍了如何基于Ollama框架安装和使用DeepSeek-R1模型。通过一步步的指导,您已经了解了从准备工作到实际应用的全过程,包括硬件和软件需求、Ollama的下载与安装、DeepSeek-R1模型的安装与使用,以及如何构建一个本地RAG应用程序。具体来说,我们首先讨论了在本地运行大型语言模型所需的硬件配置和软件依赖,确保您的系统能够支持复杂推理任务。接着,我们提供了Ollama框架的下载和安装指南,使您能够轻松管理和运行不同版本的DeepSeek-R1模型。原创 2025-02-08 09:36:52 · 817 阅读 · 0 评论 -
ollama教程——在Linux上运行大型语言模型的完整指南
在这篇文章中,我们深入探讨了Ollama框架及其在本地运行大型语言模型中的应用。通过介绍Ollama的主要特点,如模型权重、配置和数据捆绑包、多平台支持,以及易用性和安装简便性,我们了解了它如何简化开发者的工作流程。我们还讨论了Ollama的模型量化技术,特别是4-bit量化如何显著降低显存需求,使得普通计算机也能运行复杂的大型语言模型。此外,通过支持多种硬件加速选项,Ollama能够充分利用不同类型的计算资源,提升模型的运行效率。原创 2024-11-25 09:03:40 · 756 阅读 · 1 评论 -
ollama教程——如何利用Ollama Python库实现高效的AI应用
Ollama Python库是为开发者提供的一套强大工具,旨在简化与Ollama框架的集成过程。该库为Python 3.8及以上版本设计,支持多种操作系统,包括macOS、Linux,以及通过WSL 2支持Windows。Ollama库允许开发者创建自定义客户端,以便更灵活地配置和管理与Ollama框架的交互。通过自定义客户端,开发者可以指定连接的主机地址、请求超时等参数,从而适应不同的应用场景和需求。创建一个自定义客户端非常简单,只需提供必要的配置选项即可。# 创建一个自定义客户端实例。原创 2024-11-11 09:10:11 · 854 阅读 · 1 评论 -
ollama教程——如何使用JavaScript库快速在js项目中集成AI能力
Ollama JavaScript库是一个专为简化与Ollama框架集成而设计的工具。它提供了一系列API,开发者可以通过这些API在JavaScript环境中轻松调用和管理大型语言模型。这一库的设计目标是使得开发者能够以最少的代码量实现复杂的AI功能,从而加速开发过程。除了使用预训练模型外,Ollama JavaScript库还允许开发者创建自定义模型,以便更好地满足特定应用需求。下面是一个简单示例,展示如何使用create// 定义Modelfile内容SYSTEM "你是超级马里奥中的马里奥。原创 2024-11-06 10:07:57 · 624 阅读 · 0 评论 -
ollama教程——Ollama Tools功能详解实现复杂任务的完整教程
Ollama是一个开源框架,专门设计用于在本地运行大型语言模型。它通过将模型权重、配置和数据捆绑到一个包中,从而优化了设置和配置细节,包括GPU使用情况,这大大简化了在本地运行大型模型的过程。Ollama支持macOS和Linux操作系统,并且已经为Windows平台发布了预览版。Ollama的一个重要优势是其易用性。安装过程非常简单,例如在macOS上,用户可以直接从官网下载安装包并运行。而对于Windows用户,官方推荐在WSL 2中以Linux方式使用命令安装。原创 2024-08-19 08:41:43 · 1638 阅读 · 8 评论 -
ollama教程——使用LangChain调用Ollama接口实现ReAct
简化配置:Ollama将模型权重、配置和数据捆绑在一起,从而优化了设置和配置细节。用户无需过多关注GPU使用情况,可以专注于模型的应用。易用性:安装过程相对简单,例如macOS用户可以直接从官网下载安装包并运行,而Windows用户则可以通过WSL 2以Linux方式进行安装。这种便捷性使得更多开发者能够轻松上手。支持量化:Ollama支持模型量化,这一特性可以显著降低显存要求。例如,通过4-bit量化,可以将FP16精度的权重参数压缩为4位整数精度,从而大幅减小模型权重体积和推理所需显存。原创 2024-08-06 08:43:48 · 1460 阅读 · 0 评论 -
ollama教程——使用Ollama与LangChain实现Function Calling(函数调用)的详细教程(二)【附完整源码】
Ollama 是一个开源框架,专门设计用于在本地运行大型语言模型。它的主要特点是将模型权重、配置和数据捆绑到一个包中,从而优化了设置和配置细节,包括 GPU 使用情况,简化了在本地运行大型模型的过程。Ollama 支持 macOS 和 Linux 操作系统,并且已经为 Windows 平台发布了预览版。Ollama 的一个重要优势是其易用性。安装过程简单,例如在 macOS 上,用户可以直接从官网下载安装包并运行。对于 Windows 用户,官方推荐在 WSL 2 中以 Linux 方式使用命令安装。原创 2024-07-15 08:42:25 · 2135 阅读 · 8 评论 -
ollama教程——如何在Ollama中导入和管理GGUF与Safetensors模型
在使用Ollama之前,了解其支持的模型格式和版本要求是非常重要的。这部分将介绍Ollama支持的模型格式及其版本要求,并指导如何安装Ollama以确保您能够顺利进行模型导入。GGUF(General Graphical User Format)是一种高效的二进制文件格式,专门用于存储和读取机器学习模型的数据。它的设计目的是提供快速的加载和保存操作,同时保持模型数据的完整性和准确性。由于其高效性,GGUF格式被广泛应用于需要频繁读取和写入模型数据的场景中。原创 2024-07-09 08:45:00 · 7089 阅读 · 0 评论 -
Ollama教程——使用Ollama与LangChain实现Function Calling(函数调用)的详细教程(一)
OllamaFunctions是一个实验性的封装器,旨在为Ollama提供类似于OpenAI Functions的API接口。此封装器可以通过JSON Schema参数和函数调用参数,强制模型调用特定函数,从而实现更精确的任务处理。在开始之前,请确保已经按照Ollama的官方指南设置并运行本地的Ollama实例。通过上述步骤,我们展示了如何使用Ollama和LangChain实现函数调用任务。OllamaFunctions提供了一种强大的方法来定义和调用特定任务的函数,并返回结构化的输出。原创 2024-06-04 09:00:00 · 2792 阅读 · 1 评论 -
Ollama教程——深入解析:使用LangChain和Ollama构建JavaScript问答系统
本文通过详细的步骤和示例,全面介绍了如何使用JavaScript结合LangChain和Ollama构建一个高效的问答系统。从环境配置到功能实现,再到问题处理和系统优化,我们涵盖了问答系统开发的各个方面。原创 2024-05-22 08:45:00 · 1787 阅读 · 0 评论 -
Ollama教程——生成内容API:利用Ollama的原生API进行AI应用开发
在深入探讨ollama的API接口之前,让我们先了解一下API接口的基本概念及其在软件开发中的作用。API,或称应用程序编程接口,是一套明确定义的通讯方法,允许不同软件应用之间交换数据和功能。它们是现代软件开发不可或缺的一部分,尤其是在构建模块化、可扩展和维护性强的系统时。在使用生成完成(Generate a Completion)API时,精确而具体的提示词将大大提高生成内容的相关性和质量。例如,在构建聊天机器人时,根据上下文和用户的具体问题设计提示词,能够使回答更加准确和自然。原创 2024-04-22 08:48:53 · 13377 阅读 · 0 评论 -
Ollama教程——使用langchain:ollama与langchain的强强联合
在当今技术迅速发展的时代,利用最新的人工智能技术来处理复杂的数据和文档成为了开发者们追求的目标。ollama和langchain作为两个强大的工具,能够帮助我们更加高效地完成这项任务。本文将深入探讨如何将ollama与langchain结合使用,通过一个具体的示例——处理和理解《奥德赛》这一经典文献——来展示其强大的实战应用能力。本文适合具有一定编程经验的中高级开发者,旨在通过丰富的技术细节和实战代码,帮助读者掌握这两个工具的高效结合使用方法。原创 2024-04-16 09:00:14 · 8562 阅读 · 2 评论 -
Ollama教程——兼容OpenAI API:高效利用兼容OpenAI的API进行AI项目开发
对于希望充分利用ollama API的开发者来说,通过ollama提供的Python库、JavaScript库和REST API进行访问将是一个更全面的选择。ollama作为一个兼容OpenAI API的实验性平台,为开发者提供了一个灵活而强大的选择,使他们能够更容易地将现有应用与ollama集成,同时探索AI技术的新可能性。ollama是一个兼容OpenAI API的框架,旨在为开发者提供一个实验性的平台,通过该平台,开发者可以更方便地将现有的应用程序与ollama相连接。原创 2024-04-10 08:40:26 · 14182 阅读 · 3 评论 -
Ollama教程——模型:如何将模型高效导入到ollama框架
本教程详细介绍了如何将GGUF、PyTorch和Safetensors格式的模型导入到ollama框架中。通过一系列步骤,从环境准备、模型转换和量化,到最终的模型创建和运行,我们为开发者提供了一个清晰的指南。此外,我们还探讨了如何发布模型到ollama平台,使得模型可以被更广泛地分享和应用。ollama框架提供了一个灵活、高效的解决方案,帮助开发者在各种环境中部署和运行机器学习模型。无论您是想将现有模型快速部署到生产环境,还是希望探索新的模型架构,ollama都能为您提供所需的工具和资源。原创 2024-04-08 08:50:43 · 15178 阅读 · 2 评论