ollama入门教程
该专栏为热销专栏榜 第37名
文章平均质量分 96
部署和运行大语言模型LLM通常需要大量的资源和专业知识,尤其是在本地环境中。这就是ollama登场的地方。本专栏包含大量代码示例帮助您快速接入ollama开发您的AI应用。
walkskyer
这个作者很懒,什么都没留下…
展开
-
ollama入门系列教程简介与目录
Ollama教程系列是为那些希望深入了解并掌握Ollama框架的开发者设计的。通过这一系列的教程,用户将学习如何从基础设置到高级功能的各个方面,有效地在Ollama平台上开发和部署大型语言模型。本系列包括如何将模型导入Ollama框架、利用与OpenAI兼容的API、以及如何使用LangChain等工具增强项目功能。此外,系列还涵盖了如何通过Ollama的原生API生成内容,并构建实用的AI应用。无论是初学者还是寻求进一步深化知识的开发者,本教程系列都将提供必要的知识和技能,以实现有效的AI解决方案开发。原创 2024-06-01 09:45:00 · 751 阅读 · 0 评论 -
Ollama教程——入门:开启本地大型语言模型开发之旅
ollama不仅支持运行预构建的模型,还提供了灵活的工具来导入和自定义您自己的模型。无论是从GGUF格式导入还是进行模型的个性化设置,ollama都能满足您的需求。您还可以通过自定义提示来调整模型的行为。接着,创建一个ModelfileFROM llama2 # 设置创造性更高的温度参数 PARAMETER temperature 1 # 设置系统消息 SYSTEM "" "你是超级马里奥,以马里奥的身份回答问题。"" "这样,您就能按照自己的需求定制模型了。原创 2024-04-02 08:56:04 · 23249 阅读 · 2 评论 -
ollama教程——Ollama Tools功能详解实现复杂任务的完整教程
Ollama是一个开源框架,专门设计用于在本地运行大型语言模型。它通过将模型权重、配置和数据捆绑到一个包中,从而优化了设置和配置细节,包括GPU使用情况,这大大简化了在本地运行大型模型的过程。Ollama支持macOS和Linux操作系统,并且已经为Windows平台发布了预览版。Ollama的一个重要优势是其易用性。安装过程非常简单,例如在macOS上,用户可以直接从官网下载安装包并运行。而对于Windows用户,官方推荐在WSL 2中以Linux方式使用命令安装。原创 2024-08-19 08:41:43 · 419 阅读 · 0 评论 -
ollama教程——使用LangChain调用Ollama接口实现ReAct
简化配置:Ollama将模型权重、配置和数据捆绑在一起,从而优化了设置和配置细节。用户无需过多关注GPU使用情况,可以专注于模型的应用。易用性:安装过程相对简单,例如macOS用户可以直接从官网下载安装包并运行,而Windows用户则可以通过WSL 2以Linux方式进行安装。这种便捷性使得更多开发者能够轻松上手。支持量化:Ollama支持模型量化,这一特性可以显著降低显存要求。例如,通过4-bit量化,可以将FP16精度的权重参数压缩为4位整数精度,从而大幅减小模型权重体积和推理所需显存。原创 2024-08-06 08:43:48 · 577 阅读 · 0 评论 -
ollama教程——使用Ollama与LangChain实现Function Calling(函数调用)的详细教程(二)【附完整源码】
Ollama 是一个开源框架,专门设计用于在本地运行大型语言模型。它的主要特点是将模型权重、配置和数据捆绑到一个包中,从而优化了设置和配置细节,包括 GPU 使用情况,简化了在本地运行大型模型的过程。Ollama 支持 macOS 和 Linux 操作系统,并且已经为 Windows 平台发布了预览版。Ollama 的一个重要优势是其易用性。安装过程简单,例如在 macOS 上,用户可以直接从官网下载安装包并运行。对于 Windows 用户,官方推荐在 WSL 2 中以 Linux 方式使用命令安装。原创 2024-07-15 08:42:25 · 1050 阅读 · 1 评论 -
ollama教程——如何在Ollama中导入和管理GGUF与Safetensors模型
在使用Ollama之前,了解其支持的模型格式和版本要求是非常重要的。这部分将介绍Ollama支持的模型格式及其版本要求,并指导如何安装Ollama以确保您能够顺利进行模型导入。GGUF(General Graphical User Format)是一种高效的二进制文件格式,专门用于存储和读取机器学习模型的数据。它的设计目的是提供快速的加载和保存操作,同时保持模型数据的完整性和准确性。由于其高效性,GGUF格式被广泛应用于需要频繁读取和写入模型数据的场景中。原创 2024-07-09 08:45:00 · 1870 阅读 · 0 评论 -
Ollama教程——使用Ollama与LangChain实现Function Calling(函数调用)的详细教程(一)
OllamaFunctions是一个实验性的封装器,旨在为Ollama提供类似于OpenAI Functions的API接口。此封装器可以通过JSON Schema参数和函数调用参数,强制模型调用特定函数,从而实现更精确的任务处理。在开始之前,请确保已经按照Ollama的官方指南设置并运行本地的Ollama实例。通过上述步骤,我们展示了如何使用Ollama和LangChain实现函数调用任务。OllamaFunctions提供了一种强大的方法来定义和调用特定任务的函数,并返回结构化的输出。原创 2024-06-04 09:00:00 · 1694 阅读 · 1 评论 -
Ollama教程——深入解析:使用LangChain和Ollama构建JavaScript问答系统
本文通过详细的步骤和示例,全面介绍了如何使用JavaScript结合LangChain和Ollama构建一个高效的问答系统。从环境配置到功能实现,再到问题处理和系统优化,我们涵盖了问答系统开发的各个方面。原创 2024-05-22 08:45:00 · 908 阅读 · 0 评论 -
Ollama教程——生成内容API:利用Ollama的原生API进行AI应用开发
在深入探讨ollama的API接口之前,让我们先了解一下API接口的基本概念及其在软件开发中的作用。API,或称应用程序编程接口,是一套明确定义的通讯方法,允许不同软件应用之间交换数据和功能。它们是现代软件开发不可或缺的一部分,尤其是在构建模块化、可扩展和维护性强的系统时。在使用生成完成(Generate a Completion)API时,精确而具体的提示词将大大提高生成内容的相关性和质量。例如,在构建聊天机器人时,根据上下文和用户的具体问题设计提示词,能够使回答更加准确和自然。原创 2024-04-22 08:48:53 · 8287 阅读 · 0 评论 -
Ollama教程——使用langchain:ollama与langchain的强强联合
在当今技术迅速发展的时代,利用最新的人工智能技术来处理复杂的数据和文档成为了开发者们追求的目标。ollama和langchain作为两个强大的工具,能够帮助我们更加高效地完成这项任务。本文将深入探讨如何将ollama与langchain结合使用,通过一个具体的示例——处理和理解《奥德赛》这一经典文献——来展示其强大的实战应用能力。本文适合具有一定编程经验的中高级开发者,旨在通过丰富的技术细节和实战代码,帮助读者掌握这两个工具的高效结合使用方法。原创 2024-04-16 09:00:14 · 6236 阅读 · 1 评论 -
Ollama教程——兼容OpenAI API:高效利用兼容OpenAI的API进行AI项目开发
对于希望充分利用ollama API的开发者来说,通过ollama提供的Python库、JavaScript库和REST API进行访问将是一个更全面的选择。ollama作为一个兼容OpenAI API的实验性平台,为开发者提供了一个灵活而强大的选择,使他们能够更容易地将现有应用与ollama集成,同时探索AI技术的新可能性。ollama是一个兼容OpenAI API的框架,旨在为开发者提供一个实验性的平台,通过该平台,开发者可以更方便地将现有的应用程序与ollama相连接。原创 2024-04-10 08:40:26 · 9744 阅读 · 3 评论 -
Ollama教程——模型:如何将模型高效导入到ollama框架
本教程详细介绍了如何将GGUF、PyTorch和Safetensors格式的模型导入到ollama框架中。通过一系列步骤,从环境准备、模型转换和量化,到最终的模型创建和运行,我们为开发者提供了一个清晰的指南。此外,我们还探讨了如何发布模型到ollama平台,使得模型可以被更广泛地分享和应用。ollama框架提供了一个灵活、高效的解决方案,帮助开发者在各种环境中部署和运行机器学习模型。无论您是想将现有模型快速部署到生产环境,还是希望探索新的模型架构,ollama都能为您提供所需的工具和资源。原创 2024-04-08 08:50:43 · 8794 阅读 · 1 评论