目录
使用的镜像为树莓派官方镜像:已有环境python3.11
1.安装PyTorch
官方下载网址是:https://download.pytorch.org/whl/torch_stable.html
这这里如果是自己下载的话,需要寻找对应的torch、torchvision版本。
因此为了快速搭建,去掉很多麻烦,大家可以使用我的这个:yolo资源
如之后下在后将其通过MobaXterm1_CHS1、Xftp 7等软件上传到树莓派5B中,在其目录下:
pip3 install torch-2.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
pip3 install torchvision-0.16.2-cp311-cp311-linux_aarch64.whl
如果报错:
pi@raspberrypi:~/yolo $ pip install torch-2.1.2-cp311-cp311-manylinux_2_17_aarchwhl
error: externally-managed-environment
× This environment is externally managed
╰─> To install Python packages system-wide, try apt install
python3-xyz, where xyz is the package you are trying to
install.
If you wish to install a non-Debian-packaged Python package,
create a virtual environment using python3 -m venv path/to/venv.
Then use path/to/venv/bin/python and path/to/venv/bin/pip. Make
sure you have python3-full installed.
For more information visit http://rptl.io/venv
note: If you believe this is a mistake, please contact your Python installation er. You can override this, at the risk of breaking your Python installation or Otem-packages.
hint: See PEP 668 for the detailed specification.
是因为PEP 668的规定,它保护操作系统管理的Python环境不被外部工具(如pip
)修改。这在Linux系统中很常见,因为系统包管理工具(如Debian系的apt
)负责管理全局的Python包。
方法1:使用虚拟环境
虚拟环境可以创建一个隔离的Python环境,方便你在不影响系统Python安装的情况下安装包。步骤如下:
创建虚拟环境:
python3 -m venv ~/myenv
激活虚拟环境:
source ~/myenv/bin/activate
在虚拟环境中安装 .whl
文件:
激活虚拟环境后,你可以运行以下命令安装包:
pip3 install torch-2.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
pip3 install torchvision-0.16.2-cp311-cp311-linux_aarch64.whl
方法2:使用 --break-system-packages
参数
pip3 install torch-2.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl --break-system-packages
pip3 install torchvision-0.16.2-cp311-cp311-linux_aarch64.whl --break-system-packages
如果出现报错:
raise ReadTimeoutError(self._pool, None, "Read timed out.")
pip._vendor.urllib3.exceptions.ReadTimeoutError: HTTPSConnectionPool(host='www.piwheels.org', port=443): Read timed out.
那就换一个网络或者换一个时间段重试。
安装PyTorch完成:
2.安装/更新numpy:
sudo pip3 install numpy --upgrade --ignore-installed
安装/更新完成:
检验:
3.获取yolov5码源:
git clone https://github.com/ultralytics/yolov5.git
由于这个yolov5包通过git下载容易出错,大家可以使用我发的资源里的包,将其通过MobaXterm1_CHS1、Xftp 7等软件上传到树莓派5B中。
4.下载YOLOV5环境需求包
之后打开yolov5文件夹,
cd yolo/yolov5 #这是进入到你的树莓派系统中的yolov5文件夹里
sudo nano requirements.txt
将注释掉requirements.txt中的torch和torchvison对应的行,如果opencv已经安装那将opencv也注释掉,然后保存ctrl+o,回车,退出文件ctrl+x。
在终端输入:
pip3 install -r requirements.txt --break-system-packages
如果感觉下载太慢可以进行临时换源:
pip3 install -r requirements.txt --break-system-packages -i https://pypi.tuna.tsinghua.edu.cn/simple
等待下载完成;
5.yolov5使用
输入指令:
python3 detect.py
即可进行yolov5运行了
输入:
python3 detect.py --source 0
即可使用摄像头读取并进行识别了: