最大子列和问题

给定K个整数组成的序列{ N1, N2, ..., NK },“连续子列”被定义为{ Ni, Ni+1, ..., Nj },其中 1 <= i <= j <= K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。

输入格式:

输入第1行给出正整数 K (<= 100000);第2行给出K个整数,其间以空格分隔。

输出格式:

在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。

输入样例:
6
-2 11 -4 13 -5 -2
输出样例:
20
方法一:时间复杂度O(n^3)
#include <iostream>
#include <cstdio>
using namespace std;


int a[100005];


int Maxsum(int *a, int n)
{
    int max,thisum;
    max =  0;
    for (int i = 0; i < n; i++)
    {


        for (int j = i; j < n; j++)
        {
            thisum = 0;
            for (int k = i; k <= j; k++)
            {
                thisum += a[k];
            }
            if (thisum > max)
            {
                max = thisum;
            }
        }
    }
    return max;
}
int main()
{
    int k;
    while (cin >> k && k)
    {
        for (int i = 0; i < k; i++)
        {
            scanf("%d",&a[i]);
        }
        cout << Maxsum(a,k)<< endl;
    }
    return 0;
}
方法二:时间复杂度O(n^2),在法一我们可以改进,k不是必要的。
#include <iostream>
#include <cstdio>
using namespace std;

int a[100005];

int Maxsum(int *a, int n)
{
    int max,thisum;
    max = 0;
    for (int i = 0; i < n; i++)
    {
        thisum  = 0;
        for (int j = i; j < n; j++)
        {
            thisum += a[j];
            if (thisum > max)
            {
                max = thisum;
            }
        }
    }
    return max;
}
int main()
{
    int k;
    while (cin >> k && k)
    {
        for (int i = 0; i < k; i++)
        {
            scanf("%d",&a[i]);
        }
        cout << Maxsum(a,k)<< endl;
    }
    return 0;
}


方法三:时间复杂度O(nlogn)
在法二里,我们可以想办法再改进,将O(n^2)改为O(nlogn),这我们就想到了分治法。(先放一下,有时间写)
在这里,我们可以将序列分成两部分left,right,那么可能有以下三种情况:
1.最大值在左边left.
2.最大值在右边right.
3.最大值横跨左右两边。
如下如:

int MaxSum(int a[ ], int left, int right)
{
       sum=0;
       if (left= =right) {      //如果序列长度为1,直接求解
           if (a[left]>0) sum=a[left];
           else sum=0;
       }
      else {
          center=(left+right)/2;    //划分
          leftsum=MaxSum(a, left, center);   //对应情况1,递归求解
          rightsum=MaxSum(a, center+1, right); //对应情况2,递归求解
           s1=0; lefts=0;              //以下对应情况3,先求解s1
        for (i=center; i>=left; i--)
        {
            lefts+=a[i];
            if (lefts>s1) s1=lefts;
        }
        s2=0; rights=0;             //再求解s2
        for (j=center+1; j<=right; j++)
        { 
            rights+=a[j];
            if (rights>s2) s2=rights;
        }
        sum=s1+s2;              //计算情况3的最大子段和 
        if (sum<leftsum) sum=leftsum;  
                     //合并,在sum、leftsum和rightsum中取较大者
        if (sum<rightsum) sum=rightsum;
     }
     return sum;
}
方法四:时间复杂度O(N)---最快的。
思路:thisum记录当前子序列的和,值要它小于0,则重置为0,耶就是重头来过,因为前面的子序列小于0,绝对会使后面的和减小,这不是我们要的。
#include <iostream>
#include <cstdio>
using namespace std;

int a[100005];

int Maxsum(int *a, int n)
{
    int max ,thisum;
    max = thisum  = 0;
    for (int i = 0; i < n; i++)
    {
        thisum += a[i];
        if (thisum > max)
        {
            max = thisum;//更新max
        }
        if (thisum < 0)
        {
            thisum = 0;//重置过程
        }
    }
    return max;
}
int main()
{
    int k;
    while (cin >> k && k)
    {
        for (int i = 0; i < k; i++)
        {
            scanf("%d",&a[i]);
        }
        cout << Maxsum(a,k)<< endl;
    }
    return 0;
}

 

                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值