- 博客(9)
- 收藏
- 关注
原创 用MindSpore复现VAN(Visual Attention Network)
用MindSpore复现VAN(Visual Attention Network)
2022-07-31 00:16:00
1312
1
原创 MindSpore和PyTorch API映射(昇腾AI创新大赛2022-昇思赛道参赛踩坑记录)
MindSpore和PyTorch 常用算子API映射(昇腾AI创新大赛2022-昇思赛道参赛踩坑记录)
2022-07-30 23:37:29
1418
2
原创 决策树算法(实战篇——基于 sklearn 库)
决策树算法(实战篇——基于 sklearn 库)决策树算法(实战篇——基于 sklearn 库)一、sklearn 库对决策树算法实现的简介二、分类树实战三、回归树实战四、剪枝参考文献决策树算法(实战篇——基于 sklearn 库)一、sklearn 库对决策树算法实现的简介1、sklearn 中的分类树class sklearn.tree.DecisionTreeClassifier(criterion='gini', splitter='best', max_depth=None, min_sa
2022-04-28 16:12:18
1414
1
原创 决策树算法(原理篇)
决策树算法(原理篇)决策树算法一、ID3(多叉树)二、C4.5(多叉树)三、CART(二叉树)(一) CART分类树(二) CART回归树四、对连续特征的处理五、对缺失值的处理六、剪枝(一)预剪枝(二)后剪枝七、总结参考文献决策树算法一、ID3(多叉树)1、特征划分依据:信息增益 SSS 是训练样本集合,∣S∣|S|∣S∣ 是训练样本数,样本划分为 mmm 个不同的类 C1,C2,...,CmC_1,C_2,...,C_mC1,C2,...,Cm ,其样本数量分别为 ∣C1∣,∣C2∣,..
2022-04-24 18:21:49
2144
原创 模型性能度量
模型性能度量分类任务中的性能度量一、错误率与精度二、查准率、查全率与F1三、ROC与AUC参考文献分类任务中的性能度量一、错误率与精度1、定义:错误率是分类错误的样本树占样本总数的比例,精度则是分类正确的样本数占样本总数的比例。2、这是分类任务中最仓用的两种性能度量,既适用于二分类任务,也适用于多分类任务。二、查准率、查全率与F11、对于二分类问题,可将样例根据其真实类别与学习器预测类别的组合划分为真正例(true positive) 、假正例(false positive) 、真反倒(tr
2022-04-23 23:22:59
1475
原创 机器学习数据集划分方法
数据集划分方法一、留出法二、交叉验证法三、自助法四、调参与最终模型参考文献一、留出法1、将数据集 DDD 划分为两个互斥的集合:训练集 SSS 和测试集 TTT 。2、训练/测试集划分时要保持数据分布一致性,即保证训练集和测试集中类别比例一致,可采用分层采样。3、在给定训练/测试样本的比例后,仍然存在多种划分方法对初始数据集 DDD 进行分割,如把 DDD 中样本进行排序,然后把前350个正例放到训练集中,也可把后350个正例放到训练集中。一般采用若干次随机划分、重复进行试验评估后取平均值作为留出法
2022-04-23 14:16:31
5516
原创 K近邻算法(KNN)【从 KNN 到 KD 树到算法实现】
K近邻算法(KNN)【从 KNN 到 KD 树到算法实现】一、基本概念KNN是一种基本分类和回归方法。K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该输入实例分类到这个类中。(这就类似于现实生活中少数服从多数的思想)如上图所示,有两类不同的样本数据,分别用蓝色的小正方形和红色的小三角形表示,而图正中间的那个绿色的圆所标示的数据则是待分类的数据。如果K=3,绿色圆点的最邻近的3个点是2个红色小三角形和1个蓝色小正
2021-07-18 18:14:01
560
原创 Git 命令简介
Git 命令简介一、创建版本库创建文件夹 git mkdir <FolderName>显示当前目录 pwd创建仓库 git init显示隐藏目录 ls -ah添加文件到本地版本库 git add <FileName>提交文件到本地版本库 git commit -m "<Message>"二、版本管理1. 查看版本状态查看仓库当前状态 git status查看文件修改内容 git diff <FileName>注意:git dif
2021-07-17 17:18:16
284
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人