- 博客(344)
- 资源 (1)
- 收藏
- 关注
原创 模式识别作业
所以实际上基于样本的两步贝叶斯应该,首先根据训练样本估计概率密度函数,再根据估计的概率密度函数设计分类器。非参数估计又称为非参数检验:是指在不考虑原总体分布,或者不作关于参数假定的前提下,不假定数学模型,直接用已知类别的学习样本的先验知识直接进行统计检验和判断分析的一系列方法的总称。非参数估计不假定数学模型,可避免对总体分布的假定不当导致重大错误所以常有较好的稳健性。非参数估计事总体概率密度函数的形式已知,但样本所属类别位置,来求解概率密度函数的某些参数。为我们所使用的模型,遵循上述的独立同分布假设。
2022-10-24 18:48:15 712
原创 Fabric中的私有数据
这是官网提供的一个集合定义,一般配置在connection_config.json中[{"name""policy"0,3,1000000,true},{"name""policy"0,3,3,true}]name集合的名称。policy定义了哪些组织中的Peer节点能够存储集合数据。私有数据要分发到的节点数,这是链码背书成功的条件之一。为了数据冗余,当前背书节点将尝试向其他节点分发数据的数量。个区块,之后就会被清除。如果要永久保留,将此值设置为0即可。...
2022-07-21 16:19:18 2994
原创 Fabric升级智能合约
安装链码包后,需要通过组织的链码定义。该定义包括链码管理的重要参数,例如名称,版本和链码认可策略。如果组织已在其peer节点上安装了链码,则他们需要在其组织通过的链码定义中包括包ID。包ID用于将peer节点上安装的链码与通过的链码定义相关联,并允许组织使用链码来认可交易。3.1查询包ID和之前安装过的版本PackageIDPackageIDdemo_2是刚刚安装上的。通过链码时,我们将使用包ID,因此,将包ID保存为环境变量。将返回的包ID粘贴到下面的命令中。注注7051注注{.........
2022-07-20 15:19:49 364
原创 Fabric上部署智能合约
友情提示:进行本文操作要在已配置好fabric环境的条件下进行参考:Hyperledger中文官方文档 and 视频使用视频博主在gitee提交的小猫的智能合约主要功能:新建一只小猫,更新小猫信息,删除一只猫,查看小猫首先进入到在虚拟机中进入test-network目录启动测试网络创建通道另开一个终端到fabric/fabric-samples/chaincode,在此目录克隆gitee上的合约返回到test-network所在目录,以便将链码与其他网络部件打包在一起将bin目
2022-07-14 17:51:06 2868 5
原创 Ubuntu安装Docker
ubuntu自带了docker的库,但是ubuntu自带的docker版本太低,需要先卸载旧的再安装新的。卸载旧版本安装前提依赖安装GPG证书写入软件源信息安装新版本docker换源和配置在终端进入目录添加json文件:进入目录: cd /etc/docker在docker目录下创建并编辑新的文件daemon.json输入命令:vim的使用:i:插入,esc:退出编辑,:wq:保存并退出,:q:退出在文件中写入以下内容必要工具安装重启docker查看do
2022-07-07 12:03:20 405 3
原创 区块链概念集合
一个区块包含了一组有序的交易。他们以加密的方式与前一个区块相连,并且他们也会跟后续的区块相连。在这个链条中的第一个区块被称为 创世区块。区块是由排序服务创建的,并且由 Peer 节点进行验证和提交。后一区块存储着前一区块的hash值。B0是创世区块,区块 B1 是连接到区块 B0 的。区块链网络的核心是一个分布式账本,记录网络上发生的所有交易。区块链账本通常被描述为 去中心化的 ,因为它会被复制到许多网络参与者中,每个参与者都在 协作 维护账本。除了”去中心化”和”协作”之外,信息仅能以追加的方式记录到区块
2022-06-29 16:07:58 3140
原创 将QT的UI界面转换成python文件并调用
在QTcreator中或者QTdesigner中画好的ui界面转换成python文件,在pycharm中直接调用。在pycharm中的终端运行命令 :*.py是对应生成的python文件的名字,*.ui是画的UI界面(对应ui界面的路径)然后就会生成login.py文件,如下:调用文件:运行结果:...
2022-06-20 14:38:19 4888 1
原创 吴恩达机器学习——第五周学习笔记
神经网络代价函数(Cost Function)正则化逻辑回归的代价函数:神经网络的代价函数:L:是神经网络架构的层数Sl:l层的单元个数K:输出单元的个数sigmoid函数:def sigmoid(z): return 1 / (1 + np.exp(-z))前向传播函数:#前向传播函数def forward_propogate(X, theta1, theta2): m = X.shape[0] #m是X的行数
2022-05-23 16:45:28 411 1
原创 吴恩达机器学习——第四周学习笔记
之前学习过的,无论是线性回归还是逻辑回归,都存在一个共同的缺点,当特征值过多时,计算量会变得非常庞大。假设我们有非常多的特征,如当大于100个变量,我们希望用这100个特征来构建一个非线性的多项式模型,结果将是数量非常惊人的特征组合,即便我们只采用两两特征的组合我们也会有接近5000个组合而成的特征。这对于一般的逻辑回归来说需要计算的特征太多了。普通的逻辑回归模型,不能有效地处理这么多的特征,这时候我们需要神经网络。神经网络(Neural Networks)神经网络的表示 , 下图是
2022-05-20 17:09:27 303
原创 吴恩达机器学习——第三周学习笔记
二元分类(Binary Classfication)分类,一种方法是使用线性回归,将所有大于0.5的预测映射为1,将所有小于0.5的预测映射为0。然而,这种方法并不能很好地工作,因为分类实际上不是一个线性函数。分类问题和回归问题一样,只是我们现在想要预测的值只有少量离散值。现在,我们将使用二元分类问题,其中y只能有两个值,0和1。如:y∈{0,1},0代表良性肿瘤,1代表恶性肿瘤收到一封邮件,0代表是正常邮件,1代表是垃圾邮件逻辑回归(Logistic Regression)
2022-05-18 17:45:40 325 2
原创 吴恩达机器学习——第二周学习笔记
多元线性回归(multivariate linear regression)多元假设函数:hθ(x)=θ0+θ1X1+θ2X2+θ3X3+⋯+θnXnh(x)可以表示为其中:X0=1多元梯度下降(Gradient Descent For Multiple Variables)多元梯度下降和一元的形式相同,重复求解θj直至收敛。我们可以通过让每个输入值在大致相同的范围内来加速梯度下降。这是因为θ在小范围内迅速下降,在大范围内缓慢下降,因此当变量非常不均匀时
2022-05-12 16:33:16 475 2
原创 吴恩达机器学习——第一周学习笔记
学习参考:吴恩达机器学习第一周机器学习(Machine Learning)机器学习是研究我们的计算机模拟或实现人类的学习行为,来获取新的知识或技能,并且重新组织这些新的知识来改善自身的性能。按照训练样本标签的有无可以分为以下两种常用方法:监督学习和无监督学习。监督学习(Supervised Learning)监督学习:通过已有的训练样本即已知数据以及其对应的输出去训练得到一个最优模型,再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现分类的目的,也就具有了对未知数据进行分
2022-05-10 11:41:14 649 1
原创 Anaconda修改默认浏览器
学习python发现anaconda默认打开的是ie浏览器,很不舒服,那就把它换成你喜欢的浏览器吧!首先先获取到想用的浏览器的位置,桌面找到浏览器右键,“打开文件所在的位置”,下面要用。然后在电脑开始页找到anaconda文件夹,点击打开anaconda prompt输入命令:jupyter notebook --generate-config根据上面获得的地址找到配置文件的位置并用记事本打开ctrl+f搜索# c.NotebookApp.allow_origin
2022-03-14 18:15:53 5684 6
原创 Hi,好久不见
是的,消失的两年考研去了。一直没有更新博客,一方面是考研真的很忙碌,另一方面最近虽然闲下来了,想要更新博客,却无从下笔。两年来,我没有学习技术,只是一味的迎合考试,考完闲下来之后却发现自己的生活是如此的空洞。但是我也想整理一下考研的感受,毕竟这也是一段珍贵的经历。 一战英语、政治、专业课都还行,就是数学太拉垮了,差一分没有过a区国家线,我搜集了很多b区调剂的信息,参加了一次调剂的面试,但是没有通过,考完研的一段时间一直都在疯玩,考过的科目忘得差不多了,大学...
2022-02-28 15:16:08 383 4
原创 Mybatis配置Mapper.xml时报:URI is not registered (Settings | Languages & Frameworks | Schemas and DTDs)
配置Mapper.xml时mybatis的网址爆红,而且已经加了mybatis的依赖,这个错大致意思是统一资源的标识符没有注册。URI is not registered (Settings | Languages & Frameworks | Schemas and DTDs)解决方法File->Settings->Languages&Framewordks-...
2020-04-22 12:08:58 861
原创 Redis缓存穿透、缓存击穿和缓存雪崩
缓存穿透(没查到引起)缓存穿透其实就是用户想要查询一个数据,发现redis内存数据库中没有,也就是缓存没有命中,然后就向持久层数据库查询,发现也没有要查询的信息,于是就查询失败。当用户很多的额时候,缓存都没有命中,于是都去请求数据库,这会给数据库很大的压力,于是就出现了缓存穿透。解决方案:1、布隆过滤器布隆过滤器(Bloom Filter)是一种数据结构,对所有可能查询的参数以has...
2020-04-14 21:10:13 663
原创 Redis——哨兵模式
哨兵模式主从切换技术的方法是:当主服务器宕机后,需要手动的把一台服务器切换为主服务器,需要人攻的干预,会造成一段时间内服务不可用。Redis从2.8开始提供了Sentinel(哨兵)架构来解决这个问题。哨兵模式是一种特殊的模式,首先Redis提供了哨兵的命令,哨兵是一个独独立的进程,会独立运行。原理是哨兵通过发送命令,等待Redis服务器响应,从而监控运行的多个Redis实例。哨兵...
2020-04-14 19:56:03 434
原创 Redis中的主从复制(模拟一主二从)
主从复制:主从复制是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(master/leader),后者称为从节点(slave/follower);数据的复制是单向的,只能由主节点到从节点。Master以写为主,Slave以读为主。默认情况下,每台Redis服务器都是主节点。且一个主节点可以有多个从节点,但一个从节点只能有一个主节点。主从复制的作用:1、数据冗余:...
2020-04-14 17:40:46 482
原创 Redis持久化——RDB和AOF
撒子是持久化?Redis是内存数据库,如果不将内存中的数据库状态保存到磁盘,那么一旦服务器进程退出,服务器中的数据库状态也会消失。所以Redis提供了持久化功能。redis提供两种方式进行持久化,一种是RDB持久化(将Reids在内存中的数据库记录定时dump到磁盘上的RDB持久化),另外一种是AOF持久化(将Reids的操作日志以追加的方式写入文件)。RDB(Redis Dat...
2020-04-13 18:05:47 272
原创 Redis.conf配置
单位:配置文件unit单位对大小写不敏感INCLUDES包含:可以引入多个配置文件网络NETWORK:bind 127.0.0.1 #绑定的ipprotected-mode yes #保护模式port 6379 #端口设置通用GENERAL:daemonize yes #以守护进程的方式运行,默认是no,需要自己开启为yesp...
2020-04-13 18:04:28 1519 1
原创 Redis整合SpringBoot
撒子是jedis?jedies是Redis官方推荐的java连接开发工具。使用Java操作Redis的中间件。使用:我们先在windows上下载Redis测试:https://github.com/microsoftarchive/redis/releases/tag/win-3.2.100在运行的时候要打开redis-server.exe和redis-cli.exe。1、...
2020-04-13 17:41:26 276
原创 Redis中的事务和监控(乐观锁)
事务Redis事务本质:一组命令的集合。一个事务中的所有命令都会被序列化,在事务执行过程中,会按顺序执行。Redis事务的特性:一次性 顺序性 排他性Redis事务没有隔离级别的概念所有的命令在事务中并没有直接被执行,只有发起执行命令的时候才会执行 ExecRedis单条命令是保证原子性的,但是事务是不保证原子性的!Redis的事务开启事务(multi) 命...
2020-04-13 13:57:02 238
原创 Redis中三种特殊的数据类型
geospatial地理位置增加一个定位geoadd china:city 116.40 39.90 beijinggeoadd china:city 106.50 29.53 chongqing获取当前定位deopos china:city beijing两个定位之间的距离单位:m标识单位为米km标识单位为千米mi标识单位为英里ft标识单位为英尺geodist china...
2020-04-12 11:44:10 2054
原创 Redis五大数据类型——Zset
Zset(有序集合)在set的基础上,增加了一个值来进行排序 set k1 v1 zset k1 score1 v1 存储班级成绩表,工资表排序,热搜排行榜向集合中增值:127.0.0.1:6379> zadd myset 1 one #添加一个值(integer) 1127.0.0.1:6379> zadd myset 2 two 3 three #添加多个...
2020-04-11 20:07:16 302
原创 Redis五大数据类型——Hash
Hash(哈希)Map集合,key-map集合 hash变更的数据user,name,age,尤其是用户信息之类的,经常变动的信息。 hash更适合对象的存储,String更适合字符串存储set值,获取值,移除值:127.0.0.1:6379> hset user name lyr #set一个具体的key-value(integer) 1127.0.0.1:6379&...
2020-04-11 20:04:16 203
原创 Redis五大数据类型——Set
Set(集合)集合是无序不重复的通过哈希表实现的,所以添加,删除,查找的复杂度都是O(1)。添加,获取,移除元素:127.0.0.1:6379> sadd myset "hello" #set集合中添加元素(integer) 1127.0.0.1:6379> sadd myset "redis"(integer) 1127.0.0.1:6379> sme...
2020-04-11 20:00:24 145
原创 Redis五大数据类型——List
List(集合)集合是通过哈希表实现的,所以添加,删除,查找的复杂度都是O(1)。list实际上是一个链表,可以再Node的前面或者后面插入值 如果key不存在,创建新的链表 如果key存在,就新增内容 如果移除了所有的值就是一个空链表,代表不存在写值读值:127.0.0.1:6379> lpush list one #将一个或多个值插入到列表头部(左)(integ...
2020-04-11 18:16:55 168
原创 Redis五大数据类型——String
String(字符串)string 是 redis 最基本的类型,一个 key 对应一个 value。string 类型的值最大能存储 512MB。基本命令:127.0.0.1:6379> set key1 hello #设置值OK127.0.0.1:6379> get key1 #获取值"hello"127.0.0.1:6379> keys * #...
2020-04-11 18:07:13 224
原创 了解Redis
撒子是Nosql?Nosql:Not Only SQL (不仅仅是SQL) 非关系型数据库特点:方便扩展(数据之间没有关系,很好扩展) 大数据量高性能(Redis一秒写8万次,读11万次) 数据类型多样性(不需要实现设计数据库,随去随用)对比SQL和NoSQL传统的RDBMS:结构化组织 SQL 数据和关系都在单独的表中 数据定义语言 严格的一致性 基...
2020-04-11 17:57:40 252
原创 Redis中进行性能测试
撒子是redis-banchmark?redis-banchmark是Redis自带的一个压力测试工具我们可以通过下面的命令来测试redis-benchmark [option] [option value]redis 性能测试工具可选参数如下所示:测试执行100000个请求测试:redis-benchmark -h localhost -p 6379 -...
2020-04-10 15:38:24 464
原创 CentOS上安装Redis
Redis是撒子?Redis(Remote Dictionary Server ),即远程字典服务,是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。edis是一个key-value存储系统。和Memcached类似,它支持存储的value类型相对更多,很大程度补偿了memcached这类key/value存储的不足...
2020-04-10 15:35:16 262
原创 重新了解数据库——数据库用户管理和备份
用户管理创建用户create user 用户名 identidied by '密码';修改当前用户密码set password = password('密码');修改指定用户密码set password for 用户名 = password('密码');重命名rename user 旧名字 to 新名字;用户授权 all privileges 全部的权限...
2020-04-08 20:49:51 279
原创 重新了解数据库——索引
撒子是索引?索引(Index)是帮助MySQL高效获取数据的数据结构,索引可以大大提高MySQL的检索速度。索引就像是我们看书一样,不使用索引我们需要看某个知识点要一页一页的翻,而使用了索引就像是我们使用书本的目录来查询需要的内容,可以大大的提升效率。索引的分类主键索引(PRIMARY KEY)唯一的标识,主键不可重复,只能有一个列作为主键唯一索引(UNIQUE KEY)...
2020-04-08 18:01:50 225
原创 重新了解数据库——事务
撒子是事务?事务的意思是一条或者是一组语句组成一个单元,这个单元要么全部执行,要么全不执行。比如我们转账,A要给B转300块钱,我们需要用两条sql语句,A账户的钱减去500,B账户中的钱增加500,但是计算机可能由于某些原因上面语句执行了下面的没有执行,所以为了保证两条语句要么都执行,要么都不执行,这时候就用到了事务。事务的四个原则(ACID)原子性(Atomicit...
2020-04-08 17:40:24 134
原创 重新了解数据库——数据库中的函数
数据库中的函数数据库中的函数与Java中的函数类似,都是完成一定功能的代码的集合。根据函数操作数据行数可将SQL函数分为单行函数和多行函数(也就是聚合函数)。常用单行函数单行函数:返回结果是一行记录select ceiling(3.5) --向上取整 select floor(3.5) --向下取整 select rand() --返回一个0-1之间的随机...
2020-04-08 16:26:20 253
原创 重新了解数据库——排序、分页和子查询
排序语法:order by 字段 升序/降序;升序ASC 降序DESC--查询结果按成绩升序排序select id,name,scorefrom studentorder by score ASC;分页语法:limit 起始值,页面的大小--查询结果按成绩升序排序,每五个分页select id,name,scorefrom studentorder...
2020-04-08 14:55:28 217
原创 重新了解数据库——联表查询和自连接
联表查询join联表查询分为Inner join、left join、right joinleft join左连接:以左表为主。结果会将左表所有的查询信息列出,而右表只列出ON后条件与左表满足的部分。right join左连接:以右表为主。结果会将右表所有的查询信息列出,而左表只列出ON后条件与右表满足的部分。查询学生的学号,姓名和成绩从student学生表和result...
2020-04-08 12:19:10 266
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人