OpenJudge 020 棋盘问题
描述
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
输入
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
输出
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
样例输入
2 1
#.
.#
4 4
…#
…#.
.#…
#…
-1 -1
样例输出
2
1
解析
这题可以用DFS,首先遍历每一行,然后开一个数组表示每一列的状态,0表示没放过棋子,1表示放过棋子,这一行放完了就去下一行找,最终完成整个过程。要注意的点是,千万不能一个点一个点的遍历,因为棋子都是一样的,那样遍历下来会多出很多个结果。
#include<iostream>
#include<vector>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
using namespace std;
char plants[8][8];
int yy[8];
int N, K;
int counttimes;
int h;
int qizi;
void DFS(int h,int qizi) {
if (qizi == K) {
counttimes++;
return;
}
if (h >= N) {
return;
}
for (int i = 0; i < N; ++i) {
if (plants[h][i] == '#'&&yy[i] == 0) {
yy[i] = 1;
qizi++;
DFS(h + 1, qizi);
qizi--;
yy[i] = 0;
}
}
DFS(h + 1,qizi);
}
int main(void) {
cin >> N >> K;
while (N != -1 && K != -1) {
counttimes = 0;
memset(yy, 0, sizeof(yy));
h = 0;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
cin >> plants[i][j];
}
}
DFS(0, 0);
cout << counttimes << endl;
cin >> N >> K;
}
}