全网最全!AIDC智算中心--产业全解析(附上下游&细分龙头)

2月13号,随着DeepSeek的持续火爆,震惊AI圈后,特斯拉CEO马斯克宣布,旗下人工智能公司xAI开发的Grok 3 模型将在“未来一至两周发布”,全球AI大模型迎来混战。人工智能也随之切换赛道进入"算法驱动算力"的深度博弈期。

而DeepSeek开源生态催生的算法革命,正在重构国产AI芯片的软硬协同范式。加之中美博弈、“东数西算”、信创替代等多元要素影响下,政策与技术的双重变量已按下产业升级快进键,推动智算中心建设从粗放堆砌向"效能跃迁"的战略转型,智算中心AIDC显现出蓬勃的发展潜力。

今天,我们好好研究一下,彻底弄透AIDC智算中心。本文将从最根本的算力基础知识、智算中心的核心架构、产业链逻辑和关联公司、国内外市场和面临的挑战,多维度全面梳理AIDC。既可当科普,又可深入产业,掌握底层逻辑。

img

一、算力基础知识扫盲

1、算力定义

智算属于算力的一种,根据中国信通院的定义,算力分为广义和狭义之分。狭义算力是指设备通过处理数据,实现特定结果输出的计算能力;广义算力指数字经济时代新生产力,是支撑数字经济发展的坚实基础。

简单来说,算力即数据的处理能力,其实现的核心是 CPU、GPU、NPU、FPGA、ASIC 等各类计算芯片。芯片承载在高性能计算集群、边缘计算节点、服务器、电脑、各类智能终端等,对海量数据和各种数字化应用进行加工和计算。算力数值越大代表综合计算能力越强,常用的计量单位是每秒执行的浮点数运算次数(Flops,1EFlops=10^18Flops)。

2、算力单位和精度:

**
**

算力的单位:通常采用FLOPS(FloatingPointOperations Per Second)表示,每秒钟能够完成的浮点运算或指令数,例如一台计算机每秒钟可以完成10亿次浮点运算,那么它的FLOPS 值就是1G FLOPS(1 Giga FLOPS)。

**浮点运算:**就是带小数的加减乘除运算(比如,1.1+1.3 就是典型的浮点运算,计算机是二进制,1 就是 1,2 就变成了 “10”,3 是 “11”,0.1 可以看成是1除以10的结果, 只需告诉CPU , 1 后面有多少个 0 整除的整数,计算机在处理小数点的时候,就多了好几个运算步骤。所以,浮点运算的速度也就成了衡量计算机性能的标准。

基本概念如下:img

算力的计量单位,从小到大,依次是:

KFLOPS,kilo flops(每秒1000次浮点运算,10^3)

MFLOPS,million flops(每秒1百万次,10^6)

GFLOPS,giga flops(每秒10亿次,10^9)

TFLOPS, Tera flops(每秒1万亿次,10^12)

PFLOPS, peta flops(每秒1000万亿次,10^15)

EFLOPS, exaflops(每秒100亿亿次,10^18)

根据参与运算数据精度的不同,算力可以分为以下几种:

  • 双精度算力(64位,FP64):用于大规模科学计算、工程计算,适用于超算服务器;
  • 单精度算力(32位,FP32):存储空间较小部分科学计算和工程计算,使用普通的同用计算,衡量算力中心IDC的基本水平;
  • 半精度算力(16位,FP16):常用于模型训练过程中参数和梯度计算。一般默认使用FP16来表示智算中心算力规模,适用于AI服务器;
  • 整型算力 (INT8、INT4):8位整数,用于量化神经网络的计算,在低功耗、嵌入式系统和边缘设备等领域。

简单说,与智算中心或者AI相关(默认是FP16)、超算HPC(默认是FP64)

3、算力的分类:

算力按照功能类型来划分,可分为通算、智算、超算,特点和区别如下:

  • 通算:通用性强,适合日常任务,以CPU为主,单精度运算(FP32)建设灵活。

  • 智算:专注于AI任务,以GPU和AI芯片(GPU、NPU、ASIC、FPGA)为主,适合AI和机器学习等低精度计算。

  • 超算:高性能计算,以高精度为主(双精度浮点运算FP64以上),适合科学计算、大规模和复杂模型,建设规模大、成本高。

类别特点运算精度芯片架构建设模式
通算通用性强,适用于日常计算任务,性能适中,成本较低。以单精度(FP32)和双精度(FP64)为主,满足常规计算需求。以CPU为主(如x86、ARM架构),适合串行计算和通用任务。企业自建、分布式建设,以商业服务器为主,规模灵活,成本较低。
智算专注于AI任务,擅长并行计算和高吞吐量,针对深度学习等场景优化。以低精度为主(如FP16、INT8),适合AI模型的训练和推理。以GPU、TPU、AI加速芯片为主,适合并行计算和高吞吐量任务。集中式或分布式建设,通常以AI集群形式部署,规模较大。
超算计算能力极强,用于解决大规模科学和工程问题,成本高。以高精度为主(如FP64),满足科学计算的精确性要求。以高性能CPU、GPU、专用加速器为主,支持大规模并行计算。集中式建设,政府主导为主,规模庞大,成本极高。

*二、智算中心内涵&架构*

1、广义vs狭义

智算中心(Artificial Intelligence Data Center,AIDC),也分为广义和狭义之说。

狭义智算中心:指是在传统数据中心的基础上,融合 GPU、TPU、FPGA 等专用芯片以支撑大量数据处理和复杂模型训练;AIDC主要是把不同的计算任务实时智能调配给不同的服务器集群以提升计算效率;原因是AIDC部署了算力资源平台,来实现算力池化、算力调度、弹性共享及云边端协同等功能。

一言以蔽之,狭义智算中心是“机房+网络+GPU 服务器+算力调度平台”的融合基础设施,是传统数据中心的增值性延伸。

广义智算中心:是融合算力+数据+算法的新型基础设施,是AI件技术一体化的载体,是传统云的智能化升级。

img

2、智算中心架构组成

智算中心架构主要分为硬件设施、软件设施、和基础设施,如下图:

img

(1)硬件设施

**①、*服务器–*高性能计算硬件

智算中心的核心是强大的服务器集群,这些服务器通常配备先进的处理器,如 GPU(图形处理器)、FPGA(现场可编程门阵列)和 ASIC(专用集成电路)等。这些处理器擅长并行计算,逻辑推理、能够快速处理大规模的计算、训练和加工等复杂任务。

②、高速存储设备

包括固态硬盘(SSD)、HDD机械硬盘和高速内存,确保数据能够快速读取、写入和存储,满足人工智能算法对数据的高吞吐量需求。

③、高速网络连接 与交换机

为了确保数据在服务器之间的快速传输,减少计算过程中的延迟,智算中心内部采用低延迟的高速网络架构,如 InfiniBand 或以太网等互联计算架构,网络拓扑采用脊叶Spine-Leaf架构 。

而交换机提供了高速数据转发能力,满足400G甚至800G的数据交换,支持InfiniBand、以太网等高性能通信协议,这些协议低延迟、高带宽,非常适合于需要快速数据处理和传输的应用场景,是大规模计算集群中稳定和性能的重要保障。

(2)软件与算法

① AI 大模

DeepSeek、ChatTGPT、豆包、Kimi、文心一言、智谱、通义千问等这些是利用大量数据训练而成的超大规模智能模型,具有更强的泛化能力和广泛的应用场景。比如语言大模型可以用于文本生成、翻译、问答等自然语言处理任务;视觉大模型则专注于图像分类、目标检测、视频理解等计算机视觉任务;推理大模型专注于搜索增强和垂直领域知识推理,技术架构基于自研的大语言模型。

② 分布式计算框架

如深度学习架构,TensorFlow(Google 团队开发) 和 PyTorch( Facebook 开发)等框架,主要用于构建和训练大规模深度学习模型。它们提供易于使用的编程接口,并具备支持分布式训练的能力,特别适合生产部署、学术研究、产品开发和多设备运行。

③ 智算调度操作系统

是智算中心的“神经中枢”,负责对算力资源池进行高效管理和智能调度,异构AI算力云化调度,比如将智算中心中包括英伟达、海光、华为和寒武纪等在内的不同品牌、不同型号的AI算力资源卡进行统一管理、池化、调度,提供云化的弹性、自愈、灵活等能力。它通过基础设施层、平台服务层和业务系统层的协同工作,为用户提供多元化、高质量的智算服务。

(3)配电制冷等-基础设施

供配电系统为数据中心提供电源,它不仅为IT设备提供安全、稳定运行的必备条件,还保障数据中心其他设备的正常运行。配电系统和不间断电源系统(UPS/HVDC)、备用电源系统(柴油发动机组)一起,在数据中心基础设施投资占比超50%。未来,智算中心时代的电源系统向集成化、直流化、高压化演进,满足智算中心高算力发展要求。

在搭建智算中心的时候,制冷系统是基础设施三大件之一,为机房降温,是维护智算中心运行的重要保证。而当前的算力与AIDC异构、HPC、AI等需求,散热需求复杂化,液冷相比于传统的风冷,具有节能性好、PUE低、精准制冷、效率高等诸多优点,是AIDC的制冷的理想选择。

算力中心的基础框架,总结如下图:

img

三、我国智算中心的现状和卡点

1、市场情况

据工信部数据,我国算力规模 2022 年底为 180EFLOPS,位居全球第二,2025 年将增长至300EFLOPS。在 AI 产业等因素的驱动下,算力内部结构也随之发生变化,智能算力占总算力的比重由 2016 年的 3%提升至 2023 年 6 月的 25.4%。预计到 2025 年,智能算力占比将达到 35%。

2022年底,美国智算智算规模达 88.0 EFLOPS,规模占比全球 50%,而中国智算规模为 49.0EFLOPS,在全球占比为 28%。虽然总体智算规模落后于美国,但我国智能算力正处于高速增长阶段,仅几年平均增长率约为 40%,超过全球整体增长率的25.7%。

另外,据不完全统计,截至 2023 年底,全国投运/在建/拟建的智算中心共计 86 个,总建设规模超过 679 EFLOPS(换算为 FP16,下同)6,其中已投运的 27 个、在建40 个、拟建的19 个,已投运智算中心算力规模近 152 EFLOPS,在建及拟建智算中心算力规模超 770 EFLOPS。

2024 年我国智算中心建设进入快速增长阶段,上半年有规模披露的智算中心项目达 36 个,总规模超 271EFLPOS,已投运智算中心算力规模近60.9EFLPOS,在建及拟建智算中心算力规模超210 EFLOPS,未来智算中心供给将进一步爆发。

2、投资建设主体和商业模式

(1)主要建设主体

智算中心建设逐步形成“地方政府主导+互联网巨头企业主导”的两条主线。地方政府主导建设的智算中心呈小而散的特征,互联网、电信运营商企业多采用规模化、集中化的建设模式。截止 2023 年底,地方政府(城投)主导建设的智算中心共计 31 个,个数占比36%,零散分布于全国 26 个城市,投资总额超 373 亿元;企业主导建设的智算中心共计 40 个,个数占比 47%,其中大型智算中心共计 32 个,总投资额超 1553 亿元;另外,政企合建的智算中心共计 15 个,个数占比 17%,投资金额超 287 亿元。

img

(2)商业模式

智算需求的特点是场景多样化、高度定制化,同时智算中心涵盖从底层基础设施到上层应用各个方面,衍生出多元化的智算中心服务体系。智算中心服务包括机房托管服务、算力租赁服务、AI平台服务、模型定制服务及AI应用服务多个维度。但国内,智算中心产业目前处于初期阶段,算力租赁和机房托管等依然是目前主流的2个商业模式。

img

3、*痛点**和***卡点

(1)高额且持续的成本投入

智算中心通常配备高性能算力设备,包括 AI 专用芯片及服务器、IB/RoCE无损网络设备、高速并行存储设备等,这些硬件设施的投资巨大,导致初始建设成本非常高昂。

智算中心基础设施投资成本高,服务器、配电、液冷等散热系统,动辄几个亿的投资,比如,一台H800的8卡服务器300万,而收益率不高等;

而且**,**随着 AI 技术的快速迭代,设备的更新周期缩短,长期投资回报率的不确定性增大。

(2)工艺和生态壁垒

**芯片工艺受限:**A100,H100,B200等高端智算芯片对华禁售,高端芯片工艺长期被卡。华为、龙芯、寒武纪、曙光、沐曦、海光等企业进入实体清单,但国内芯片制造的先进工艺受限,国内GPU的发展依然长坡慢雪。

CUDA生态垄断:英伟达CUDA生态完备,已形成了技术和事实上的垄断。国内生态孱弱,且企业之间山头林立,无法形成很好的合力,建议需要从 TUP等AI算力芯绕道,构建开放、共享的智算生态环境。

(3)技术迷宫

首先技术上,面临异构计算的难题:需整合多种计算资源(如CPU、GPU、FPGA),管理和调度难度大,加之大规模并行处理,处理海量数据时,并行计算和负载均衡面临挑战。

其二,智算中心的基础架构如同精密机械钟表,每一个零件都必须严丝合缝,需要资深团队保证高效稳定的运行。例如,智能计算与先进 AI 算法的融合,要求智算中心在软硬件架构设上实现深度优化和高度协同调度,确保其能够适应多种复杂场景的运算需求。

再者,在网路数据层面,如何实现大规模数据的高带宽、低延时、高速网络传输、高效存储和实时分析处理的技术难题。

img

三、产业链详解&关联公司:

智算中心AIDC的上下游产业链涵盖了从硬件制造、软件开发到应用服务的多个环节,涉及众多科技企业和机构。智算中心产业链关键环节分为上游设施层、中游运营层和下游应用层。

上游设施层包括基建施工、制冷系统、供配电系统、基础网络设施等基建基础设施环节和 AI 芯片、AI 服务器、网络设备、存储设备、数据中心管理系统等 IT 基础架构环节;

中游运营层主要是智算中心运营环节,包括算力池化、算力调度、弹性共享、云边端协同等调度管理以及智算服务、IDC 服务、云服务、数据服务、算法服务等服务提供两部分;

下游应用层主要是智算在模型训练、模型推理、智慧科研等场景,以及自动驾驶、智慧医疗、智慧金融等行业的应用。

img

以下是智算中心产业链的详细梳理及相关公司:

**1、 上游:硬件与基础设施–**金字塔尖

上游主要包括计算芯片、存储设备、网络设备等硬件制造,以及数据中心基础设施建设。

智算中心的基础设施和硬件是其高效运行的基础,涵盖建筑、电力、冷却、网络、存储、安全等方面,以及CPU、GPU、FPGA、ASIC、SSD、HDD、NVMe、高速网卡、交换机、AI加速卡、智能网卡、服务器管理卡和监控设备等重要硬件。这些设施和硬件的合理配置与管理,是智算中心稳定高效运行的关键。

(1)计算芯片

①GPU:用于并行计算和深度学习:英伟达NVIDIA:全球GPU领导者,提供A100、H100等AI计算芯片。超威 AMD:提供Instinct系列GPU,用于高性能计算。国内品牌包括:华为昇腾、寒武纪、昆仑芯、摩尔线程。

②TPU:Google:自研TPU,专为AI任务优化。

③ AI加速芯片:

  • 华为:昇腾(Ascend)系列AI芯片。

  • 寒武纪:思元(MLU)系列AI芯片。

  • Graphcore:IPU(智能处理器)芯片。

④ CPU:

  • Intel:Xeon系列处理器,负责同用计算。

  • AMD:EPYC系列处理器。

  • ARM:提供低功耗CPU架构。

  • 龙芯中科:中国CPU龙头

(2)存储设施

智算中心的海量数据存储和快速访问对存储系统要求高,具体存储设施分为3类:

①SSD:固态硬盘,Solid State Drive,高速存储,用于缓存、存储频繁访问的数据,以提供快速的读写响应,升数据处理的效率。

国际上:三星、海力士、美光、铠侠、西数,在设计、技术领先、投资、营收上都遥遥领先;中国是:长江存储、长鑫存储、澜起科技、兆益科技

②HDD:机械硬盘,Hard Disk Drive,大容量存储,则用于存储不常访问的数据,以降低存储成本,即冷数据存储。

全球前三是:希捷、西部数据、东芝。希捷和西部数据市场份额各约40%,东芝约20%。

③NVMe:非易失性存储,Non-Volatile Memory Express,超高速存储,用于高性能计算,并行计算的存储,NVMe协议可以通过PCIe通道跟CPU直接相连,真正做到低延时;如:迈络思Mellanox。

**(3)网络设备 --**核心桥梁

在智算中心,为了确保数据在服务器之间的快速传输,减少计算过程中的延迟,各种网络设计和互联技术要求高,内部采用低延迟的高速网络架构,如网络拓扑采用脊叶Spine-Leaf架构 、网络技术采用InfiniBand 或以太网等。

①、网络设备技术特点

智算中心的网络设备技术要求很高,通常支持更高的网络带宽,范围在200-800GB,以应对AI大规模训练的海量数据传输要求。

组网规模方面,智算中心网络涉及的服务器数量较多,每台服务器的网卡数量也有所增加,因此对交换机的数量需求激增。

智算中心的网络拓扑主要采用Spine-Leaf架构,这种无阻塞网络拓扑结构能够确保数据流量的高效传输。Spine交换机连接所有的Leaf交换机,形成一个高带宽、低延迟的网络环境,非常适合AI训练和大规模数据处理。

img

另外,智算中心对网络时延有极高的要求。例如,基于RDMA网络的技术:Remote Direct Memory Access(远程直接内存访问),它允许一台计算机的内存直接访问另外一台计算机的内存,而无需经过操作系统内核(即CPU)的介入。从而“解放”CPU的工作压力。

网络技术上,有InfiniBan和RoCE 两种典型算力互联技术: InfiniBan简称 IB,无线带宽的意思,提供高速、可靠的数据传输,特别适合高性能计算(HPC)和AI应用。RoCE: 基于以太网的协议,成本较低,易于集成到现有的网络基础设施中,适合一般的AI训练和推理任务。

RoCE和InfiniBand这两种网络技术,提供了极低的时延,其中RoCE的时延约为5微秒(ROCE),而InfiniBand的时延则在2微秒以下。

而网络设备和技术的选择,需要根据智算中心的特定需求和资源进行定制,以确保最佳的性能和效率。和传统数据相比,具体区别看下表:

img

另外,在所有网络设备中,交换机、路由器、光模块、 高速铜缆连接器是关键,值得深挖,我们拆解一下:

②、交换机

交换机是一种用于电光信号转发的网络设备,连接服务器等终端设备,并通过与网络设备互联,实现所有设备的互联互通,最常见的交换机是以太网交换机。交换机在保障高效网络连接和数据传输方面发挥关键作用。

思科是全球路由器和交换机霸主,另外就是英伟达的Mellanox系列交换机,国内交换机前三大厂商:华为、紫光股份、锐捷网络。

③、光模块

光模块是光纤通信系统的核心器件,用于实现电光和光电信号转换。光模块由光器件、功能电路和光接口组件等组成,其中核心构成器件是光收发器件,主要包括TOSA,ROSA。

在光模块的发送端电信号转换成光信号,通过光纤传送后,接收端再把光信号转换成电信号,看下图:

img

现有光模块带宽主要有40G、100G、200G、400G,目前正朝着800G、1.6T甚至更高的带宽发展;未来光模块向更高速、更高密度、低功耗的技术迭代,如CPO(光电共封装技术)和硅光子技术。

2025 年全球光模块市场将达到113亿美元。国内光模块供应链健全,可以出口海外,据2023年的数据,全球光模块前10强中,7家是中国公司。主要厂商包括:中际旭创、光迅科技、新易盛、天孚通信、华工科技。

④、 高速铜缆连接器

交换网络的主流连接方有3种:光模块+光纤、AOC(有源光缆)+光纤、DAC(直连铜缆)+铜线。不同于光模块的长距离运输高额费用,近距离传输,短期来看,高速铜缆链接就是最具性价比的方案,距离传输(通常≤10米)。

高速铜缆(DAC,direct attach cable ),两端是链接器 ,中间是铜缆,传输介质:铜,有望在智算网络的Scale up(纵向拓展)和Scale out(横向拓展)领域大范围应用。

具体公司包括:1)线材&线缆供应商:尔核材(乐庭智联)、精达股份(恒丰特导)、鸿腾精密、立讯精密(含立讯技术、汇聚科技)等;2)国产高速背板连接器厂商:华丰科技、中航光电;3)国产高速 I/O 连接器厂商:意华股份、立讯精密、;4)连接器组件&代工商:鼎通科技等。

**(4)基础设施-配电系统(****基础设施投资*占*比超30%)

AI算力的发展离不开电力能源的供应,根据预测,到2030 年,全国智算中心年用电量在0.6万亿度-1.3万亿度,约占当年全社会用电量的5%-10%;而且,供配电系统在数据中心基础设施投资占比超30%。

img

①、定义

配电系统:是指从10kV电源进线,经过10kV配电装置、变压器、0.4kV配电装置、不间断电源系统及不间断电源输出配电装置,到电子信息设备电源进线全过程。由配变电系统、不间断电源系统(即交流UPS电源或HVDC(高压直流电源)、备用电源系统(柴油发动机组)构成。

② 、趋势

智算中心配电系统未来向集成化、直流化、高压化演进:传统主流架构为2N,DR/RR简化架构有望推广;目前交流UPS市场占比80%,高压直流HVDC占比20%左右;采用 DC 750V直流系统的电缆用量相较AC 380V UPS系统减少 50%;未来,智算中心时代向智算中心时代从10kV向110kV/220kV演进。

③、推荐公司

• 不间断供电电源方面,HVDC/UPS/电源变换厂商:禾望电气、科华数据、科士达等;

• 高低压配变电方面,可关注研发能力强、具备数据中心产品经验的优质厂商:明阳电气、思源电气等;

• 电能质量方面,可关注SiC基产品研发及落地领先企业:盛弘股份等。

*(5)基础设施-**液**冷系统*(****投资占比约10%*)*

①、定义:

数据中心传统的冷却为风冷直接或间接冷却,但智算中心机柜复杂,单台服务器功率密度持续提升,传统风冷制冷效果差,不能精准调节,导致能源浪费。相比风冷,液冷具有高效能、高可靠、超静音、节省空间等优势。

②、分类*&**区别:*

液冷主要分为:主要包括冷板式液冷、浸没式液冷、喷淋式液冷。

目前国内以冷板式液冷为主,冷板式液冷方案在我国起步较早,在可靠性、可维护性、技术成熟度等方面具备优势,且对服务器与动力系统改造较小,IT设备维护较为简单;浸没式液冷方案散热能力强,噪音小,但定制化程度较高(例如IT设备需要定制),且其他部件(例如光模块)的兼容性仍在验证;喷淋式液冷方案噪音低,且节省冷却液,但目前生态建设仍不完善,供应商较少。根据赛迪顾问数据,22年冷板式液冷占比达65%,其次为浸没式液冷,占比34%,喷淋式液冷占比较低,仅1%。

三者区别如下图:(图片来自申万宏源研究)

img

③、推荐标的:

  • 冷板式液冷主流厂商:华为、浪潮、曙光、新华三、英维克(国产温控龙头)

  • 相变浸没式:曙光、诺亚等

  • 单相浸没式:阿里、绿色云图、云酷等

  • 喷淋式液冷:广东合一、中国长城等

img

2. 中游:软件与平台(运营和调度)

中游主要包括AI框架、操作系统等软件开发、资源调度,以及云计算和智算平台的建设。

(1) AI框架

①TensorFlow(Google):主流深度学习框架。

② PyTorch(Meta):广泛用于科研和工业界。

③MindSpore(华为):华为自研AI框架。

④PaddlePaddle(百度):百度自研AI框架。

(2)操作系统与资源调度

算力资源不均衡是目前我国算力发展中的一大难题,算力调度是算力资源效率最大化的路径。算力调度是未来算力网络的重要拼图,是算力时代的国家电网。据测算,2025年算力调度潜在市场规模在400亿元以上。据不完全统计,目前国内在建和已经建设的算力调度平台超过20个。

算力池化:一种基于云计算技术的资源整合和管理方法,旨在通过技术手段将原本分散、独立的计算资源(如GPU、AI芯片等)集成起来,形成一个统一管理、按需分配的资源池。这一过程类似于将多个水源汇集到一起,形成一个大水池,然后根据各个用户的实际需求来分配水量,算力调度涉及配额策略、共享超分、负载均衡等分配策略。以达到高效利用资源的目的。

具体案例:谷歌的Kubernetes开发平台,用于容器编排工具,用于资源调度;Slurm高性能计算任务调度系统;趋动科技的OrionX池化平台、VMware的BitFusion池化平台、中兴Tec的OpenPalette平台以及华为基于Volcano的CCE平台等

(3) 云计算与智算平台

① 亚马逊AWS、Google Cloud、Microsoft Azure:全球领先的云服务提供商。

② 阿里云、腾讯云、华为云:中国领先的云服务提供商。

③ 浪潮信息、商汤科技、旷视科技:提供AI计算平台和解决方案。

3. 下游:应用与服务

下游主要包括AI技术在模型训练、模型推理、智慧科研等场景,以及自动驾驶、智慧医疗、智慧金融等各个行业的相关的应用服务提供商。

(1) 智慧城市

海康威视、大华股份:提供智能安防和城市大脑解决方案。

百度、阿里:提供智慧交通和城市管理服务。

(2) 医疗健康

联影医疗、东软集团:提供医学影像AI分析服务。

华大基因、贝瑞基因:提供基因测序和生物信息分析服务。

(3) 自动驾驶

特斯拉、Waymo:自动驾驶技术研发。

百度Apollo、小马智行:提供自动驾驶解决方案。

(4) 金融科技

① 蚂蚁集团、腾讯金融科技:提供智能风控和金融服务。

② 同花顺、东方财富:提供智能投顾和量化交易服务。

(5) 科学研究

① 中科院、清华大学:利用智算中心进行气候模拟、天体物理等研究。

② OpenAI、DeepMind:利用智算中心进行AI算法研究。

4. 关联公司

以下是智算中心产业链中的一些代表性公司:

(1)硬件:NVIDIA、AMD、Intel、华为、寒武纪、Google。

(2)软件:Google(TensorFlow)、Meta(PyTorch)、华为(MindSpore)、百度(PaddlePaddle)。

(3)云计算:AWS、Google Cloud、阿里云、腾讯云、华为云。

(4)应用服务:商汤科技、旷视科技、海康威视、特斯拉、蚂蚁集团。

四、总结与展望

近年来,我国AIDC智算中心在政策支持、技术创新和市场需求的多重驱动下,取得了显著进展:比如智算中心被纳入国家“新基建”战略,北上广深等40个城市已建成超过70个(23年底数据)大规模智算中心,部分中心的算力已达到国际先进水平,成为推动数字经济和人工智能发展的重要引擎。

作为新质生产力和新型基础设施的核心组成部分,正在为各行各业的智能化转型提供强大算力支撑。在硬件方面,高性能GPU、FPGA等加速芯片的应用显著提升了算力;在软件方面,分布式计算、深度学习框架优化等技术提高了资源利用效率。同时,国产AI芯片和软件生态正在逐步发展,为自主可控奠定基础。

AIDC已广泛应用赋能于金融、医疗、制造、交通等各行各业,到了万物皆可AI的势头,正在颠覆和重塑产业的底层逻辑。例如,在医疗领域支持AI辅助诊断,协作癌症早筛和遗传疾病的检查,比如,2月18日,华为将发布基于DCS AI解决方案打造的瑞金病理大模型,致力于提高病理图像的自动分析能力,大幅提高诊断速度和准确性。此外,智算中心还为高校和科研机构提供算力支持,推动AI算法和模型的研究创新。

尽管发展迅速,我国智算中心仍面临一些瓶颈:比如高端AI芯片依赖进口,美国的持续制裁和断供,存在供应链风险;国产软件生态尚不完善、另外智算中心建设和运营成本高,投资回报周期较长,目前高端AI和算力领域人才不足,制约技术创新发展。

随着这波AI和DeepSeek带来国运的提升,加之中国人民的韧性、我们对研发的举国投入和人才培养,中国势必很快突破高端芯片、分布式计算等关键技术。未来,通过降低对国外AI芯片的依赖,构建自主可控的算力体系,推动国产AI软件生态建设,促进硬件、软件和应用的协同发展,形成完整的智算中心产业链生态护城河,助力我国在全球AI竞争中占据领先地位。


制造、交通等各行各业,到了万物皆可AI的势头,正在颠覆和重塑产业的底层逻辑。例如,在医疗领域支持AI辅助诊断,协作癌症早筛和遗传疾病的检查,比如,2月18日,华为将发布基于DCS AI解决方案打造的瑞金病理大模型,致力于提高病理图像的自动分析能力,大幅提高诊断速度和准确性。此外,智算中心还为高校和科研机构提供算力支持,推动AI算法和模型的研究创新。

尽管发展迅速,我国智算中心仍面临一些瓶颈:比如高端AI芯片依赖进口,美国的持续制裁和断供,存在供应链风险;国产软件生态尚不完善、另外智算中心建设和运营成本高,投资回报周期较长,目前高端AI和算力领域人才不足,制约技术创新发展。

随着这波AI和DeepSeek带来国运的提升,加之中国人民的韧性、我们对研发的举国投入和人才培养,中国势必很快突破高端芯片、分布式计算等关键技术。未来,通过降低对国外AI芯片的依赖,构建自主可控的算力体系,推动国产AI软件生态建设,促进硬件、软件和应用的协同发展,形成完整的智算中心产业链生态护城河,助力我国在全球AI竞争中占据领先地位。


在这里插入图片描述

大模型岗位需求

大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》*

内容包括:项目实战、面试招聘、源码解析、学习路线。

img

imgimgimgimg
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
在这里插入图片描述
👉2.大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

img

大模型教程

👉3.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

img

电子书

👉4.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

img

大模型面试

**因篇幅有限,仅展示部分资料,**有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

**或扫描下方二维码领取 **

在这里插入图片描述

图文引用来源华信咨询设计研究院、国信证券、浙商证券、申万宏源研究、中泰证券、柏林云、OSC开源社区、AI Long Cloud等公众号、 各公司官网等公开资料;仅作分享,不代表本人立场,不构成投资建议。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值