在n×n格的棋盘上放置彼此不受攻击的n个皇后。按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。n后问题等价于在n×n格的棋盘上放置n个皇后,任何2个皇后不放在同一行或同一列或同一斜线上。
回溯算法描述:
void Queue(int n)
{
for (i=1; i<=n; i++) //初始化
x[i]=0;
k=1;
while (k>=1)
{
x[k]=x[k]+1; //在下一列放置第k个皇后
while (x[k]<=n && !Place(k))
x[k]=x[k]+1; //搜索下一列
if (x[k]<=n && k= =n) { //得到一个解,输出
for (i=1; i<=n; i++)
cout<<x[i];
return; }
else if (x[k]<=n && k<n)
k=k+1; //放置下一个皇后
else {
x[k]=0; //重置x[k],回溯
k=k-1;
} }
}
bool Place(int k) //考察皇后k放置在x[k]列是否发生冲突
{
for (i=1; i<k; i++)
if (x[k]= =x[i] | | abs(k-i)= =abs(x[k]-x[i]))
return false;
return true; }
NQueen.java //回溯算法
import java.util.*;
public class NQueen
{
public static void main(String[] args)
{
Scanner in=new Scanner(System.in);
System.out.println("Please enter the number of queen you want(请输入你要求解的皇后的个数)");
int n=in.nextInt();
double startTime=System.currentTimeMillis();//startTime
Queen(n);
double endTime=System.currentTimeMillis();//endTime
System.out.println("Basic Statements take(基本语句用时) "+(endTime-startTime)+" milliseconds!");
}
/**
*用回溯法设计函数Queen(n)求解
*/
public static boolean Place(int x[],int k)//考察皇后k放置在x[k]列是否发生冲突
{
for(int i=1; i<k; i++)
if (x[k]==x[i]||Math.abs(k-i)==Math.abs(x[k]-x[i]))
return false;
return true;
}
public static void Queen(int n)
{
int x[]=new int[n+1];
for (int i=1; i<=n; i++)//初始化
x[i]=0;
int k=1;
while (k>=1)
{
x[k]=x[k]+1;//在下一列放置第k个皇后
while (x[k]<=n&&!Place(x,k))
x[k]=x[k]+1;//搜索下一列
if (x[k]<=n && k==n)
{ //得到一个解,输出
System.out.println("The answer is(得到的解是):");
for (int i=1; i<=n; i++)
System.out.print("("+i+","+x[i]+")"+" ");
System.out.println();
return;
}
else if (x[k]<=n && k<n)
k=k+1;//放置下一个皇后
else
{
x[k]=0;//重置x[k],回溯
k=k-1;
}
}
}
}