给定一个整数类型的数组 nums
,请编写一个能够返回数组“中心索引”的方法。
我们是这样定义数组中心索引的:数组中心索引的左侧所有元素相加的和等于右侧所有元素相加的和。
如果数组不存在中心索引,那么我们应该返回 -1。如果数组有多个中心索引,那么我们应该返回最靠近左边的那一个。
示例 1:
输入:
nums = [1, 7, 3, 6, 5, 6]
输出: 3
解释:
索引3 (nums[3] = 6) 的左侧数之和(1 + 7 + 3 = 11),与右侧数之和(5 + 6 = 11)相等。
同时, 3 也是第一个符合要求的中心索引。
示例 2:
输入:
nums = [1, 2, 3]
输出: -1
解释:
数组中不存在满足此条件的中心索引。
说明:
nums
的长度范围为[0, 10000]
。- 任何一个
nums[i]
将会是一个范围在[-1000, 1000]
的整数。
------------------------------------------------------------------------------------------------------------------------
解法一
class Solution {
public int pivotIndex(int[] nums) {
int sumLeft = 0;
for(int i=0; i<nums.length; i++) {
int sumRight = 0;
sumLeft = i-1<0? 0 : sumLeft+nums[i-1];
for(int j=i+1; j<nums.length; j++) {
sumRight += nums[j];
}
if(sumLeft==sumRight) {
return i;
}
}
return -1;
}
}
解放二
class Solution {
public int pivotIndex(int[] nums) {
for (int i=0; i<nums.length; i++) {
int sumLeft = 0;
int sumRight = 0;
for (int j = 0; j < i; j++) {
sumLeft += nums[j];
}
for (int k=i+1; k<nums.length; k++) {
sumRight += nums[k];
}
if (sumLeft == sumRight) {
return i;
}
}
return -1;
}
}
两种解法思路一样, 都是左边加,右边加, 左右相等返回下标 ,时间复杂度一样.