-
模型偏差:
- 定义:模型过于简单,函数集合太小,无法包含使损失变低的函数,导致模型在训练集上表现不佳。
- 解决方法:增加模型的灵活性,如增加输入特征、使用深度学习、设更大的模型等。
-
优化问题:
- 问题表现:梯度下降等优化方法可能卡在局部最小值,无法找到使损失很低的参数,导致模型在训练集上的损失不够低。
- 判断方法:通过比较不同的模型来判断,先训练一些比较浅的、简单的模型,了解它们的损失情况,再与深的模型进行比较。如果深的模型灵活性大但损失无法比浅的模型压得更低,则代表优化有问题。
- 建议:面对新问题,先跑比较小、浅的网络或用非深度学习方法,如线性模型、支持向量机等,它们较容易做优化,不容易出现优化失败的问题。
-
过拟合:
- 原因:模型的灵活性过大,在训练集上表现好,但在测试集上损失大。
- 解决方法:
- 增加训练集:通过数据增强,根据问题理解创造新数据,但要选择合适的数据增强方式。
- 给模型一些限制:减少模型参数、使用较少特征、采用早停、正则化和丢弃法等方法。
- 注意事项:模型的复杂程度要适中,太复杂会过拟合,太简单会有模型偏差的问题。不能根据公开测试集来选择模型,因为可能会在私人测试集上得到很差的结果。
-
交叉验证:
- 方法:把训练数据分成训练集和验证集,用验证集来衡量模型的分数并挑选结果。为避免随机分验证集导致结果差,可采用 k 折交叉验证,将训练集切成 k 等份,重复进行训练和验证,最后平均每个模型在不同情况下的结果,选择最好的模型。
-
不匹配:
- 定义:训练集和测试集的分布不同,导致模型在测试集上表现不佳,增加数据也无法解决。
- 解决方法:需要对训练集和测试集的产生方式有一些理解,判断是否遇到不匹配的情况。
“Datawhale X 李宏毅苹果书 AI夏令营”深度学习-第二章 实践方法论
最新推荐文章于 2024-10-31 17:05:07 发布