java中超过long范围的超大整数相加算法(面试高频) 第二版

14 篇文章 0 订阅
3 篇文章 0 订阅

第二版针对第一版做了一定优化,代码和算法就是个不断优化的过程。具体题目背景请看第一版文章,
地址:https://blog.csdn.net/wandou9527/article/details/108025167
大佬有更好更优雅的实现方式请评论区交流讨论。

直接上代码:

import org.junit.Test;

/**
 * @author liming
 * @date 2020/8/20
 */
public class BigNumAddDemo {

    @Test
    public void bigintegerAddTest() {
        System.out.println("Long.MAX_VALUE = " + Long.MAX_VALUE);
        bigNumAdd("112", "2019");
        bigNumAdd(Long.MAX_VALUE + "", Long.MAX_VALUE + "");
        bigNumAdd(Long.MAX_VALUE + "", "10");
    }

    public void bigNumAdd(String strNum1, String strNum2) {
        int len1 = strNum1.length();
        int len2 = strNum2.length();
        int maxLen = Integer.max(len1, len2);
        StringBuilder targetSb = new StringBuilder();
        //进位
        int carry = 0;
        for (int i = 0; i < maxLen; i++) {
            int temp = carry;
            carry = 0;
            if (i < len1) {
                temp += Integer.parseInt(strNum1.charAt(len1 - 1 -i) + "");
            }
            if (i < len2) {
                temp += Integer.parseInt(strNum2.charAt(len2 - 1- i) + "");
            }
            if (temp >= 10) {
                temp = temp - 10;
                carry = 1;
            }
            targetSb.append(temp);
        }
        if (carry > 0) {
            targetSb.append(carry);
        }
        System.out.println(targetSb.reverse().toString());
    }
}
### 回答1: 在数学,我们可以使用科学计数法来表示非常大的数。具体地,科学计数法表示为 $a \times 10^n$,其 $a$ 是小于 $10$ 的数,$n$ 是整数。 对于超过 LONG 数据类型范围大整数,我们可以将它们表示为科学计数法,并进行相应的运算。 具体地,我们可以将这些大整数表示为 $a_1 \times 10^{n_1} + a_2 \times 10^{n_2} + \cdots + a_k \times 10^{n_k}$ 的形式,其 $a_1,a_2,\cdots,a_k$ 表示每一位上的数字,$n_1>n_2>\cdots>n_k$。这样我们就可以将超过 LONG 数据类型范围大整数拆分成若干个科学计数法的形式。 接下来,我们可以按照科学计数法的加法规则进行运算,具体步骤如下: 1. 对于两个科学计数法 $a \times 10^n$ 和 $b \times 10^m$,先让它们的指数 $n$ 和 $m$ 相等。 2. 然后将它们的系数 $a$ 和 $b$ 相加得到系数 $c$。 3. 如果 $c$ 的绝对值小于 $10$,则 $c \times 10^n$ 就是它们的和。 4. 否则,我们将 $c$ 除以 $10$,指数 $n$ 加 $1$,直到 $c$ 的绝对值小于 $10$,此时 $c \times 10^n$ 就是它们的和。 通过以上步骤,我们可以将两个科学计数法相加,并得到其结果的科学计数法表示。 ### 回答2: 超过LONG范围大整数相加算法一般使用字符串进行处理。首先,将两个大整数以字符串的形式输入。然后,创建一个新的字符串来存储相加的结果。 算法的主要思路是按照从右向左的顺序,依次对每一位进行相加,并将进位保存下来。具体步骤如下: 1. 定义两个指针,分别指向两个输入字符串的末尾。 2. 创建一个变量carry来保存进位,初始化为0。 3. 循环直到两个指针都达到字符串的开头: - 将两个指针指向的字符转换为整数,并将它们相加,再加上carry的值。 - 将结果除以10,得到当前位的值,将余数保存到结果字符串。 - 更新carry为商。 - 将两个指针向前移动一位。 4. 如果还有一个指针没有到达开头,则将剩余的数字转换为整数,并加上carry的值,将结果添加到结果字符串。 5. 如果最后的carry不为0,则将它添加到结果字符串的最前面。 6. 将结果字符串反转,即为最终的相加结果。 通过这种算法,可以处理超过LONG范围大整数相加问题。需要注意的是,该算法的时间复杂度为O(n),其n为输入字符串的长度。 ### 回答3: 超过LONG范围大整数相加算法可以使用字符串来进行计算。具体步骤如下: 1. 将两个大整数分别转换为字符串,并获取它们的长度。 2. 对长度较短的整数字符串进行前导补零,使得两个整数字符串长度相等。 3. 从字符串的末尾开始逐位相加,并将结果保存在一个新的字符串。 4. 需要考虑进位的情况:如果相加的结果大于9,则将进位保存在一个标志位,并在下一位相加时加上进位。如果最后一次相加的结果还有进位,则在结果字符串的开头加上进位。 5. 将得到的结果字符串转换为整数。 例如,计算大整数1564879665245204654894和265412399841254179643这两个数相加的结果: 1. 将两个整数转换为字符串:"1564879665245204654894"和"265412399841254179643"。 2. 获取两个整数字符串的长度,长度分别为22和21。 3. 由于长度不相等,需要在长度较短的字符串开头补零,使得两个字符串长度相等:"01564879665245204654894"和"0265412399841254179643"。 4. 从字符串的末尾开始逐位相加:4+3=7, 9+4=13,保存结果为字符串"37",14进位;1+2+1(进位)=4,保存结果为字符串"437";...依次类推。 5. 得到最终结果字符串为:"680000206508127263537"。 6. 将结果字符串转换为整数,得到最终结果为680000206508127263537。 通过以上步骤,可以实现超过LONG范围大整数相加算法
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大树91

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值